Extremal Cuts of Sparse Random Graphs

Abstract:

The Max-Cut problem seeks to determine the maximal cut size in a given graph. With no polynomial-time efficient approximation for Max-Cut (unless \(P=NP \)), its asymptotic for a typical large sparse graph is of considerable interest. We prove that for uniformly random \(d \)-regular graph of \(N \) vertices, and for the uniformly chosen Erdos-Renyi graph of \(M=Nd/2 \) edges, the leading correction to \(M/2 \) (the typical cut size), is \(P^* \sqrt{NM/2} \). Here \(P^* \) is the ground state energy of the Sherrington-Kirkpatrick model, expressed analytically via Parisi's formula.

This talk is based on a joint work with Subhabrata Sen and Andrea Montanari.