THE WEIZMANN INSTITUTE OF SCIENCE
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Geometric Functional Analysis and Probability Seminar

Room 261, Ziskind Building
on Thursday, Mar 12, 2015
at 11:05

Toby Johnson
University of South California

The frog model on trees

Abstract:

Imagine that every vertex of a graph contains a sleeping frog. At time 0, the frog at some designated vertex wakes up and begins a simple random walk. When it lands on a vertex, the sleeping frog there wakes up and begins its own simple random walk, which in turn wakes up any sleeping frogs it lands on, and so on. This process is called the frog model.

I’ll talk about a question posed by Serguei Popov in 2003: On an infinite d-ary tree, is the frog model recurrent or transient? That is, is each vertex visited infinitely or finitely often by frogs? The answer is that it depends on d: there’s a phase transition between recurrence and transience as d grows. Furthermore, if the system starts with Poisson(m) sleeping frogs on each vertex independently, there’s a phase transition as m grows. This is joint work with Christopher Hoffman and Matthew Junge.