Abstract:

A family of sets F is said to satisfy the (p,q)-property if among any p sets in F, some q have a non-empty intersection. Hadwiger and Debrunner (1957) conjectured that for any $p > q > d$ there exists a constant $c = c_{d}(p,q)$, such that any family of compact convex sets in \mathbb{R}^d that satisfies the (p,q)-property, can be pierced by at most c points. The classical Helly's Theorem is equivalent to the fact that $c_{d}(p,p)=1$ $(p > d)$.

In a celebrated result from 1992, Alon and Kleitman proved the conjecture. However, obtaining sharp bounds on the minimal such $c_{d}(p,q)$, called `the Hadwiger-Debrunner numbers', is still a major open problem in combinatorial geometry.

In this talk we present improved upper and lower bounds on the Hadwiger-Debrunner numbers, the latter using the hypergraph container method.

Based on joint works with Shakhar Smorodinsky and Gabor Tardos.