THE WEIZMANN INSTITUTE OF SCIENCE
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Geometric Functional Analysis and Probability Seminar

Room 261 , Ziskind Building
on Thursday, Jun 11, 2015
at 11:05

Anton Malyshev
Weizmann Institute of Science

Metric distortion between random finite subsets of the interval

Abstract:

Consider a random finite metric space X given by sampling n points in the unit interval uniformly, and a deterministic finite metric space U given by placing n points in the unit interval at uniform distance. With high probability, X will contain some pairs of points at distance roughly $1/n^2$, so any bijection from X to U must distort distances by a factor of roughly n. However, with high probability, two of these random spaces, X_1 and X_2, have a bijection which distorts distances by a factor of only about $n^{2/3}$. The exponent of $2/3$ is optimal.