THE WEIZMANN INSTITUTE OF SCIENCE
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Foundations of Computer Science Seminar

Room 261, Ziskind Building
on Monday, May 02, 2016
at 14:30

moved to room 155

Merav Parter
MIT, CSAIL

MST in Log-Star Rounds of Congested Clique

Abstract:

We present a randomized algorithm that computes a Minimum Spanning Tree (MST) in $O(\log^* n)$ rounds, with high probability, in the Congested Clique model of distributed computing. In this model, the input is a graph on n nodes, initially each node knows only its incident edges, and per round each two nodes can exchange $O(\log n)$ bits.

Our key technical novelty is an $O(\log^* n)$ Graph Connectivity algorithm, the heart of which is a (recursive) forest growth method, based on a combination of two ideas: a sparsity-sensitive sketching aimed at sparse graphs and a random edge sampling aimed at dense graphs.

Our result improves significantly over the $O(\log \log \log n)$ algorithm of Hegeman et al. [PODC 2015] and the $O(\log \log n)$ algorithm of Lotker et al. [SPAA 2003; SICOMP 2005].

Join work with Mohsen Ghaffari.