Oka Principles and the Linearization Problem

Abstract:

Let Q be a Stein space and L a complex Lie group. Then Grauert’s Oka Principle states that the canonical map of the isomorphism classes of holomorphic principle L-bundles over Q to the isomorphism classes of topological principle L-bundles over Q is an isomorphism. In particular he showed that if P, P' are holomorphic principle L-bundles and $\Phi: P \to P'$ a topological isomorphism, then there is a homotopy Φ_t of topological isomorphisms with $\Phi_0 = \Phi$ and $\Phi_1 = P'$. A holomorphic isomorphism.

Let X and Y be Stein G-manifolds where G is a reductive complex Lie group. Then there is a quotient Stein space Q_X and a morphism $\pi_X: X \to Q_X$ such that $(\pi_X)^\ast \mathcal{O}(Q_X) = \mathcal{O}(X)^G$. Similarly we have $p_Y: Y \to Q_Y$.

Suppose that $\Phi: X \to Y$ is a G-biholomorphism. Then the induced mapping $\phi: Q_X \to Q_Y$ has the following property: for any $z \in Q_X$, $X_z = \pi_X^{-1}(z)$ is G-isomorphic to $Y_{\Phi(z)}$ (the fibers are actually affine G-varieties). We say that ϕ is admissible. Now given an admissible ϕ, assume that we have a G-equivariant homeomorphism $\Phi: X \to Y$ lifting ϕ. Our goal is to establish an Oka principle, saying that ϕ has a deformation Φ_t with $\Phi_0 = \phi$ and Φ_1 biholomorphic.

We establish this in two main cases. One case is where Φ is a diffeomorphism that restricts to G-isomorphisms on the reduced fibers of π_X and π_Y. The other case is where Φ restricts to G-isomorphisms on the fibers and X satisfies an auxiliary condition, which usually holds. Finally, we give applications to the Holomorphic Linearization Problem. Let G act holomorphically on $X = \mathbb{C}^n$. When is there a change of coordinates such that the action of G becomes linear? We prove that this is true, for X satisfying the same auxiliary condition as before, if and only if the quotient Q_X is admissibly biholomorphic to the quotient of a G-module V.