Oka Principles and the Linearization Problem

Abstract:

Let \(Q \) be a Stein space and \(L \) a complex Lie group. Then Grauert’s Oka Principle states that the canonical map of the isomorphism classes of holomorphic principle \(L \)-bundles over \(Q \) to the isomorphism classes of topological principle \(L \)-bundles over \(Q \) is an isomorphism. In particular he showed that if \(P, P' \) are holomorphic principle \(L \)-bundles and \(\Phi : P \to P' \) a topological isomorphism, then there is a homotopy \(\Phi_t \) of topological isomorphisms with \(\Phi_0 = \Phi \) and \(\Phi_1 : P \to P' \) a holomorphic isomorphism.

Let \(X \) and \(Y \) be Stein \(G \)-manifolds where \(G \) is a reductive complex Lie group. Then there is a quotient Stein space \(Q_X \), and a morphism \(\pi_X : X \to Q_X \) such that \((\pi_X)^* \mathcal{O}(Q_X) = \mathcal{O}(X)^G \). Similarly we have \(p_Y : Y \to Q_Y \).

Suppose that \(\Phi : X \to Y \) is a \(G \)-biholomorphism. Then the induced mapping \(\phi : Q_X \to Q_Y \) has the following property: for any \(z \in Q_X \), \(X_z := \pi_X^{-1}(z) \) is \(G \)-isomorphic to \(Y_{\#(z)} \) (the fibers are actually affine \(G \)-varieties). We say that \(\phi \) is admissible. Now given an admissible \(\phi \), assume that we have a \(G \)-equivariant homeomorphism \(\Phi : X \to Y \) lifting \(\phi \). Our goal is to establish an Oka principle, saying that \(\phi \) has a deformation \(\Phi_t \) with \(\Phi_0 = \Phi \) and \(\Phi_1 \) biholomorphic.

We establish this in two main cases. One case is where \(\Phi \) is a diffeomorphism that restricts to \(G \)-isomorphisms on the reduced fibers of \(\pi_X \) and \(\pi_Y \). The other case is where \(\Phi \) restricts to \(G \)-isomorphisms on the fibers and \(X \) satisfies an auxiliary condition, which usually holds. Finally, we give applications to the Holomorphic Linearization Problem. Let \(G \) act holomorphically on \(X = \mathbb{C}^n \). When is there a change of coordinates such that the action of \(G \) becomes linear? We prove that this is true, for \(X \) satisfying the same auxiliary condition as before, if and only if the quotient \(Q_X \) is admissibly biholomorphic to the quotient of a \(G \)-module \(V \).