Abstract:

For some rectangular Hardy classes of analytic functions, an optimal method of interpolation has been previously found, within the framework of Optimal Recovery. It will be shown that this method of interpolation, based on the Abel-Jacobi elliptic functions, is also optimal, according to corresponding criteria of Nonparametric Regression and Optimal Design.

In a non-asymptotic setting, the maximal mean squared error of the optimal interpolant is evaluated explicitly, for all noise levels away from 0. In these results, a pivotal role is played by an interference effect, in which both the stochastic and deterministic parts of the interpolant exhibit an oscillating behavior, with the two oscillating processes mutually subduing each other.