Abstract:

Let K be a complete discrete valuation field with finite residue field of characteristic $p > 0$. Let G be the absolute Galois group of K and for a natural M, let $G(M)$ be the maximal quotient of G of nilpotent class $<p$ and period p^M. Then $G(M)$ can be identified with a group obtained from a Lie \mathbb{Z}/p^M-algebra L via (truncated) Campbell-Hausdorff composition law. Under this identification the ramification subgroups in upper numbering $G(M)^{(v)}$ correspond to ideals $L^{(v)}$ of L. It will be explained an explicit construction of L and the ideals $L^{(v)}$. The case of fields K of characteristic p was obtained by the author in 1990's (recently refined), the case of fields K of mixed characteristic requires the assumption that K contains a primitive p^M-th root of unity (for the case $M=1$ cf. Number Theory Archive).