Abstract:

We consider an algebraic variety V and its foliation, both defined over a number field. Given a (compact piece of a) leaf L of the foliation, and a subvariety W of complementary codimension, we give an upper bound for the number of intersections between L and W. The bound depends polynomially on the degree of W, the logarithmic height of W, and the logarithmic distance between L and the locus of points where leaves of the foliation intersect W improperly.

Using this theory we prove the Wilkie conjecture for sets defined using leaves of foliations under a certain assumption about the algebraicity locus. For example, we prove the if none of the leaves contain algebraic curves then the number of algebraic points of degree d and log-height h on a (compact piece of a) leaf grows polynomially with d and h. This statement and its generalizations have many applications in diophantine geometry following the Pila-Zannier strategy.

I will focus mostly on the proof of the main statement, which uses a combination of differential-algebraic methods related to foliations with some ideas from complex geometry and value distribution theory. If time permits I will briefly discuss the applications to counting algebraic points and diophantine geometry at the end.