Abstract:

In this talk, we will discuss some questions related to polynomial approximations of AC0. A classic result due to Tarui (1991) and Beigel, Reingold, and Spielman (1991), states that any AC0 circuit of size s and depth d has an ε-error probabilistic polynomial over the reals of degree at most $(\log(s/\varepsilon))^{\mathcal{O}(d)}$. We will have a re-look at this construction and show how to improve the bound to $(\log s)^{\mathcal{O}(d)} \cdot \log(1/\varepsilon)$, which is much better for small values of ε. As an application of this result, we show that $(\log s)^{\mathcal{O}(d)} \cdot \log(1/\varepsilon)$-wise independence fools AC0, improving on Tal's strengthening of Braverman's theorem that $(\log(s/\varepsilon))^{\mathcal{O}(d)}$-wise independence fools AC0. Time permitting, we will also discuss some lower bounds on the best polynomial approximations to AC0.

Joint work with Srikanth Srinivasan.