Prahladh Harsha
Tata Institute of Fundamental Research and Weizmann Institute

On polynomial approximations to AC^0

Abstract:

In this talk, we will discuss some questions related to polynomial approximations of AC^0. A classic result due to Tarui (1991) and Beigel, Reingold, and Spielman (1991), states that any AC^0 circuit of size s and depth d has an ϵ-error probabilistic polynomial over the reals of degree at most $(\log(s/\epsilon))^\mathrm{O}(d)$. We will have a re-look at this construction and show how to improve the bound to $(\log s)^\mathrm{O}(d) \cdot \log(1/\epsilon)$, which is much better for small values of ϵ. As an application of this result, we show that $(\log s)^\mathrm{O}(d) \cdot \log(1/\epsilon)$-wise independence fools AC^0, improving on Tal's strengthening of Braverman's theorem that $(\log(s/\epsilon))^\mathrm{O}(d)$-wise independence fools AC^0. Time permitting, we will also discuss some lower bounds on the best polynomial approximations to AC^0.

Joint work with Srikanth Srinivasan.