Abstract:

Consider a simple random walk on \mathbb{Z} with a random coloring of \mathbb{Z}. Look at the sequence of the first N steps taken and colors of the visited locations. From it, you can deduce the coloring of approximately \sqrt{N} integers. Suppose an adversary may change δN entries in that sequence. What can be deduced now? We show that for any $\theta < 0.5$, $p > 0$, there are N_0, δ_0 such that if $N > N_0$ and $\delta < \delta_0$ then with probability $> 1 - p$ we can reconstruct the coloring of $> N^{\theta}$ integers.