Segre indices, Welschinger weights, and an invariant signed count of real lines on real projective hypersurfaces.

Abstract:

As it was observed a few years ago, there exists a certain signed count of real lines on real projective hypersurfaces of degree $2n+1$ and dimension n that, contrary to the honest "cardinal" count, is independent of the choice of a hypersurface, and by this reason provides, as a consequence, a strong lower bound on the honest count. Originally, in this invariant signed count the input of a line was given by its local contribution to the Euler number of an appropriate auxiliary universal vector bundle.

The aim of the talk is to present other, in a sense more geometric, interpretations of the signs involved in the invariant count. In particular, this provides certain generalizations of Segre indices of real lines on cubic surfaces and Welschinger-Solomon weights of real lines on quintic threefolds.

This is a joint work with S. Finashin.