Selfdual cuspidal representations of $\text{GL}(r,D)$ and distinction by an inner involution

Abstract:

Let n be a positive integer, F be a non-Archimedean locally compact field of odd residue characteristic p and G be an inner form of $\text{GL}(2n,F)$. This is a group of the form $\text{GL}(r,D)$ for a positive integer r and division F-algebra D of reduced degree d such that $rd=2n$. Let K be a quadratic extension of F in the algebra of matrices of size r with coefficients in D, and H be its centralizer in G. We study selfdual cuspidal representations of G and their distinction by H, that is, the existence of a nonzero H-invariant linear form on such representations, from the viewpoint of type theory. When F has characteristic 0, we characterize distinction by H for cuspidal representations of G in terms of their Langlands parameter, proving in this case a conjecture by Prasad and Takloo-Bighash.