Strong Average-Case Circuit Lower Bounds from Non-trivial Derandomization

Abstract:

We prove that for all constants \(a \), \(\text{NQP} = \text{NTIME}[n^{\text{polylog}(n)}] \) cannot be \((1/2 + 2^{(\log^{a} n)})\)-approximated by \(2^{(\log^{a} n)}\)-size \(\text{ACC}^{0}\) of THR circuits (\(\text{ACC}^{0}\) circuits with a bottom layer of threshold gates). Previously, it was even open whether \(\text{E}^{\text{NP}} \) can be \((1/2 + 1/\sqrt{n})\)-approximated by \(\text{AC}^{0}[2]\) circuits.

More generally, we establish a connection showing that, for a typical circuit class \(C \), non-trivial nondeterministic CAPP algorithms imply strong \((1/2 + 1/n^{\omega(1)})\) average-case lower bounds for nondeterministic time classes against \(C \) circuits. The existence of such (deterministic) algorithms is much weaker than the widely believed conjecture \(\text{PromiseBPP} = \text{PromiseP} \).

Our new results build on a line of recent works, including [Murray and Williams, STOC 2018], [Chen and Williams, CCC 2019], and [Chen, FOCS 2019]. In particular, it strengthens the corresponding \((1/2 + 1/\text{polylog}(n))\)-inapproximability average-case lower bounds in [Chen, FOCS 2019]. The two important technical ingredients are techniques from Cryptography in \(\text{NC}^{0}\) [Applebaum et al., SICOMP 2006], and Probabilistic Checkable Proofs of Proximity with \(\text{NC}^{1}\)-computable proofs.