Abstract:

Let M be a smooth, compact, connected two-dimensional, Riemannian manifold without boundary, and let C_{ϵ} be the amount of time needed for the Brownian motion to come within (Riemannian) distance ϵ of all points in M. The first order asymptotics of C_{ϵ} as ϵ goes to 0 are known. We show that for the two dimensional sphere

$$\sqrt{C_{\epsilon}}-2\sqrt{2}\left(\log \epsilon^{-1}-\frac{1}{4}\log \log \epsilon^{-1}\right)$$

is tight.

Joint work with David Belius and Ofer Zeitouni.