Abstract:

Let M be a smooth, compact, connected two-dimensional, Riemannian manifold without boundary, and let \(C_\varepsilon \) be the amount of time needed for the Brownian motion to come within (Riemannian) distance \(\varepsilon \) of all points in M. The first order asymptotics of \(C_\varepsilon \) as \(\varepsilon \) goes to 0 are known. We show that for the two dimensional sphere \(\sqrt{C_\varepsilon} - 2\sqrt{2} (\log \varepsilon^{-1} - \frac{1}{4}\log\log \varepsilon^{-1}) \) is tight.

Joint work with David Belius and Ofer Zeitouni.