Abstract:

Let M be a smooth, compact, connected two-dimensional, Riemannian manifold without boundary, and let C_{ϵ} be the amount of time needed for the Brownian motion to come within (Riemannian) distance ϵ of all points in M. The first order asymptotics of C_{ϵ} as ϵ goes to 0 are known. We show that for the two dimensional sphere

$$\sqrt{C_{\epsilon}} - 2\sqrt{2} \left(\log \epsilon^{-1} - \frac{1}{4} \log \log \epsilon^{-1} \right)$$

is tight.

Joint work with David Belius and Ofer Zeitouni.