Abstract:
Given a quadratic form Q in d variables over the integers, e.g. $Q(x,y,z) = xy - z^2$, and a set of positive density E in \mathbb{Z}^d, we investigate what kind of structure can be found in the set $Q(E-E)$. We will see that if $d \geq 3$, and Q is indefinite, then the measure rigidity, due to Bourgain-Furman-Lindenstrauss-Mozes or Benoist-Quint, of the action of the group of the symmetries of Q implies that there exists $k \geq 1$ such that $k^2*Q(\mathbb{Z}^d)$ is a subset of $Q(E-E)$. We will give an alternative proof of the theorem for the case $Q(x,y,z) = xy - z^2$ that uses more classical equidistribution results of Vinogradov, and Weyl, as well as a more recent result by Frantzikinakis-Kra. The latter proof extends the theorem to other polynomials having a much smaller group of symmetries. Based on joint works with M. Bjorklund (Chalmers), and K. Bulinski (Sydney).