Ergodic Theory: Home Assignment 9

Let (X, \mathcal{B}, T, μ) be a ppt of a Lebesgue space. Define $H(T) := \{\lambda \in \mathbb{C} : \exists f \in L^2(\mu), f \circ T = \lambda f \mod \mu\}$. This set is called *the point spectrum of T*.

- 1. Show that $H(T) \subseteq \{z \in \mathbb{C} : |z| = 1\}.$
- 2. Show that if $f \in L^2(\mu)$ and $f \circ T = \lambda f \mod \mu$, then $|f| \equiv \text{const. } \mu$ -a.e.
- 3. Show that if $\lambda, \sigma \in H(T)$, then also $1, \lambda \sigma, \lambda^{-1} \in H(T)$.
- 4. Show that if $f, g \in L^2(\mu)$ and $f \circ T = \lambda f, g \circ T = \sigma g \mod \mu$ for $\lambda \neq \sigma$, then $\langle f, g \rangle = 0$ (the inner-product of $L^2(\mu)$ as defined in the lecture for complex functions).

Deduce that H(T) is a countable subgroup of the unit circle.

Good luck!