Ergodic Theory: Home Assignments 7+8

Let S be a finite set, $A \in M_{S \times S}(\{0,1\})$ be a transition matrix, and (X, σ) be a TMS induced by A and S. Assume that (X, σ) is irreducible. Fix a symbol $a \in S$.
$\forall 0 \leq k \leq p-1, S_{k}:=\{b \in S: \exists n$ s.t. $n=k \bmod p, a \xrightarrow{n} b\}$. We've seen in class that $X=\bigcup_{k=0}^{p-1} S_{k}$, and $\left\{S_{k}\right\}_{k=0}^{p-1}$ are pairwise disjoint. We've also seen that $\forall 0 \leq k \leq p-1$ $\mathcal{W}_{k}:=\left\{\left(a_{0}, \ldots, a_{p-1}\right): a_{0} \in S_{k}, a_{p-1} \in S_{k-1 \bmod p}\right\}$ induces a new TMS X_{k} with permitted transitions $w^{1} \rightarrow w^{2}$ iff $w_{p-1}^{1} \rightarrow w_{0}^{2}, w^{1}, w^{2} \in \mathcal{W}_{k} . \sigma_{k}: X_{k} \rightarrow X_{k}$ is naturally associated with $\sigma^{p}: X \rightarrow X$, as seen in class.

1. $p:=\operatorname{gcd}(\{n: b \xrightarrow{n} b\})$ is independent of the choice of $b \in S$.
2. $\forall 0 \leq k \leq p-1, \operatorname{gcd}(\{n: w \xrightarrow{n} w\})$ for some (any) $w \in \mathcal{W}_{k}$ (edges are w.r.t to σ_{k}).
3. $\forall 0 \leq k \leq p-1, \forall w \in \mathcal{W}_{k} \exists N_{w}$ s.t. $\forall n>N_{w} w \xrightarrow{n} w$ (edges are w.r.t to σ_{k}).

Please solve all three questions until Jan 5th. When solving any question, you may assume the correctness of the preceding questions. Guidance for questions 1 and 3 may be found in Omri's notes, in §1.5.4.2 Ergodicity And Mixing, within footnotes 1 and 3.

Good luck!

