Lecture 1: Measure Theoretic Probability Thess
Why Do We Care About This? Ergodic theory describes the stochastic behavior of deterministic dynamical systems, and it uses measure theoretic language.

Setup of Naive Probability Theory:

- finite sample space $\Omega=\left\{\omega_{1}, \ldots, \omega_{N}\right\}$.
- each point has probability $\operatorname{Prob}\left(\omega_{i}\right)=p_{i}$
- Ar event is a subset $E \subseteq \Omega$. It has probability

$$
\operatorname{Prob}(E)=\sum_{\omega \in \Omega} \operatorname{Prob}(\omega)=\sum_{i=1}^{N} P_{i} \underbrace{}_{\text {indicator }=\left\{\begin{array}{l}
1 \\
1_{E}\left(\omega_{i} \in E\right. \\
0 \\
\text { else }
\end{array}\right.}
$$

But this doesn't work in models where Ω i uncountable * (erg. $\Omega=[0,1], \mathbb{R}^{d} e t$) and each $\omega \in \Omega$ has prob. zero
\rightarrow that's what measure theory B for.

* A set A B countable ($n y N p$) if it can be pat in the form $A=\left\{a_{1}, \ldots, a_{n}\right\}$ or $\left\{a_{1}, a_{2}, a_{1}, \ldots\right\}$.
Many sets $([0,1], \mathbb{R},\{$ irrationals $\}, .$.) are uncountale

Measure Theoretic Probability Theory (Kolmagoru,'33) A probability space is (Ω, J, μ) where
(i) Ω is a general (perhaps uncountable) set
(2) Ie is a collection of subsets of Ω, called "measurable sets", with the σ-abgetre axioms:

- $\phi, \Omega \in J e$
- if $E \in J$, then $E^{c}:=\{\omega \in \Omega: \omega \notin \Omega\} \in J e$
- if E_{1}, E_{2}, \ldots is a countable collection of Sets in Fe, then $\bigcup_{i=1}^{0} E_{i}, \bigcap_{i=1}^{\infty} E_{i} \in J_{e}$.
(3) μ, called the probability measure, is a function $\mu: \sqrt{e} \rightarrow[0,1]$ s.t. $\mu(\Omega)=1$ and with the σ-additivity property:
If E_{i} is a countable collection of measurable seth and $E_{i} \cap E_{j}=\phi$ for all $i \neq j$, then

$$
\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

* $\bigcup_{i=1}^{\omega} E_{i}=\left\{\omega \in \Omega: \omega \in E_{i}\right.$ for some $\left.i\right\}$
$\bigcap_{i=1}^{\infty} E_{i}=\left\{\omega \in \Omega: \omega \in E_{i}\right.$ for all $\left.i\right\}$
[Why do we not simply take $\overline{J e}=\left\{\begin{array}{c}\text { all subseb } \\ \text { of } \Omega\end{array}\right\}$? Because there are (many) important cases when we cannot define a σ-additive measure with given symmetries on all subsets.
Solovay's The ('70) : The paradoxical "non measurable sets" which cause this problem cannot be constructed without the axiom of choice
\Rightarrow physicists don't need to warn g about non measurable sets (but mathematicians dd)]

Random Variables:

- A random variable (or an "I-measurable function") is a function $f: \Omega \rightarrow \mathbb{R}$ s.t.
$[f \leq t]:=\{\omega \in \Omega: f(a) \leq t\} \in J$ for all t.
- Allows to define the distribution of f

$$
F(t)=\mu[f \leq t] \quad(t \in \mathbb{R})
$$

- For example, a Gaussian random variable on Ω is a measurable $f: \Omega \rightarrow \mathbb{R}$ s.t. $\mu(f \leq t)=\frac{1}{\sqrt{2 \pi \pi^{d}}} \int_{-\infty}^{t} e^{-5 / 2 \pi d s}$ for all t.

If $f: \Omega \rightarrow \mathbb{R}$ is bounded and measurable, we can oho define its expectation, or integral

$$
\mathbb{E}_{\mu}(f)=\int_{\Omega} f d \mu
$$

How to Define the Integral:
(1) Case 1 ("simple function"): Suppose f has finitely many values, i.e.
$f(a)=\sum_{i=1}^{n} y_{i} 1_{\left[f=y_{i}\right]}(a)$. Then

$$
\int_{\Omega} f d \mu:=\sum_{i=1}^{n} y_{i} \mu\left\{\omega \in \Omega: f(\omega)=y_{i}\right\}
$$

(2) Case 2 (measurable functions $|f| \leq M$):

- Such functions are uniform limits of simple functor:

$$
\begin{gathered}
f(\omega)=\sum_{k=-\mu_{n}}^{\mu_{n}} \frac{k}{\left[\frac{k-1}{n}<f \leq \frac{k}{n}\right]^{(\omega)} \pm \frac{1}{n}} \\
\iint_{\Omega} f d \mu:=\lim _{n \rightarrow \infty} \sum_{k=-\mu_{n}}^{\mu_{n}} \frac{k}{n} \mu\left[\frac{k-1}{n}<f \leq \frac{k}{n}\right]
\end{gathered}
$$

Stochastic Processes: A stochastic process (in discrete time) is a sequence of measurable functions $f_{i}: \Omega \rightarrow \mathbb{R}$ on the same probability space.

The joint distribution is

$$
\begin{aligned}
& \operatorname{Prob}\left[a_{i}<f \leq b_{i} \quad(i=1, \ldots, n)\right] \\
& :=\mu\left\{\omega \in \Omega: a_{i}<f(\omega) \leq f\left(b_{i}\right), i=1, \ldots, n\right\} \\
& \left(=\mu\left(\bigcap_{i=1}^{n}\left[f \leq b_{i}\right] \backslash\left[f \leq a_{i}\right]\right) .\right)
\end{aligned}
$$

Examples
(I) Bernoulli Processen

- Informally: A sequence of independent random variables X_{1}, X_{2}, \cdots, each taking N possible values s_{1}, \ldots, s_{N} with prob. p_{1}, \ldots, p_{N}.
- Formally: The sample space of $\left(X_{1}, X_{2}, \ldots\right)$ B

$$
\Omega=\left\{\underline{x}=\left(x_{1}, x_{4}, x_{3}, \ldots\right): x_{i} \in S\right\}
$$

where $S=\left\{s_{1}, \ldots, s_{N}\right\}$.

A cylinder set is a set of the form

$$
\left[a_{1}, \cdots, a_{n}\right]:=\left\{\underline{x} \in \Omega: x_{i}=a_{i} \quad(i=1, \cdots, n)\right\}
$$

Wed like to have

$$
\mu\left[a_{1}, \ldots, a_{n}\right]=p_{a_{1}} \cdots p_{a_{N}}
$$

Thy. There exists a F-algetra Fe and a σ-additive $\mu: J \rightarrow[0,1]$ s.t.:
(a) Fe contains all the cylinder
(b) $\mu\left[a_{1}, \ldots, a_{a}\right]=p a_{1} \cdots p_{a_{N}}$ for eva z cylinder.

The coordinate function $X_{i}(\underline{x})=x_{i}$ form a strichastic process, called a Bernoulli process. $X_{i}=$ " i th outcome"

Why do we need Ω and F ? Because it allows us to study events which insole all of X_{r}. at the same time, e.g.

$$
\left\{\underline{x} \in \Omega: \frac{f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)}{n} \underset{n \rightarrow \infty}{\longrightarrow} \int_{\Omega} f d \mu\right\}
$$

(II) Markov Chains: Suppose

- G is a directed graph with finite or countable collection of vertices S
- $\left(p_{i}\right)_{\text {ie } s}$ is a prob. vector
- $\left(p_{i j}\right)_{S \times S}$ is a stochastic matrix st
$P_{i j}>0 \Leftrightarrow i \rightarrow j$ is an edge in the graph.
Sample Space:

$$
\Omega=\left\{\left(x_{1}, x_{2}, \ldots\right): \begin{array}{l}
x_{i} \in S, x_{i} \rightarrow x_{i+1} \\
\text { is an edge of } G
\end{array} \quad(i \in \mathbb{N})\right\}
$$

Wed like $\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left\{\underline{x}: x_{i}=a_{i} \quad(i=1, \ldots, n)\right\}$ to have probability $P_{a_{1}} P_{a_{1} a_{2}} \cdots P_{a_{n-1}} a_{n}$.
The. There exists a σ-algebrafewhich contains all cylinders and a σ-additive $\mu: T o \rightarrow[0,1]$ s.t. for every cylinder

$$
\mu\left[a_{1}, \cdots, a_{n}\right]=p_{a_{n}} p_{a_{1} a_{2}} \cdots p_{a_{n-1} a_{n}} .
$$

Again, $X_{i}: \Omega \rightarrow \mathbb{R}, X_{i}(\underline{x})=x_{i}$ i] a stochastic procen

$$
X_{i}=\text { "position of the chain }
$$

(3) "Real" Coin Tossing: What's the probability that a tossed coin will fall with the arigind top
 side up?

- Sample space: $\{(v, \omega): v>0, w \in \mathbb{R}\}$
$v=$ vertical velocity
$\omega=$ angular velacits
- Random Wariable : $X(v, \omega)= \begin{cases}T & \begin{array}{l}\text { number of } \\ \text { thu meir } \\ \text { the is } \\ \text { even }\end{array} \\ B & \text { is odd }\end{cases}$
- time in the air: $v-g(t / 2)=0$

$$
t=2 v / g
$$

- number of Slips: $\quad N=\lfloor\omega t / \pi\rfloor=\left\lfloor\frac{2 \omega v}{\pi g}\right\rfloor$

$$
X(v, \omega)=\left\{\begin{array}{ll}
T & 2 k \leq \frac{2 \omega \sigma}{\pi g}<2 k+1 \\
B & 2 k+1 \leqslant \frac{20 r}{\pi g}<2 k+2
\end{array} \quad(k \in \mathbb{Z}) .\right.
$$

where we believe the actual values of (G, a) lie

Heuristic: For many measures which model oar uncertainty as to the precise value of (v, d), the probability of ' T ' is roughly $1 / 2$.

