
 

Lecture 2 The Ergodic Theorem
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Probability Preserving Transformation

Def A probability preserving transformation T on a prob

space R F p R a map T R R which is
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Construction Fix some large energy level Ho

R initial condition qn Pi pull H Hot

Je the Borel f algebra the smallest F algebra
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Remarks In this example
That To OT a state of the system at time n
when the initial state was a
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Morallyspeaking Invariant function quantities

Crucialliference Potentially there are many more

µ a e measurable invariant functions than globally
defied continuous conserved quantities

To check ergodicity it is not enough
to show that all continuous globally defined
invariant funition are constant

This is why checking ergodicity is so difficult



IrgodcThm Bikf31 Suppose T is

a probability preservingmap on a probability space CR.FM
and let f R R be a measurable function sit Sifidyeo
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The Main Problem with the Ergodic Theorem
Let
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Fact of Life It is very common for chaotic maps
to have many different ergodic invariant measures

If µ µ are two such measures and
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Unique Ergodicity

Setup A metric space is a set with a distance

function d rig sit

d x 7 0
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dlx.gl day 2 dlx.at triangle inequality
In this case we say that kn y if deny 0

A metric space is called compact if every sequence has
a convergent subsequence
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Time Let T be a continuousmap on a compact metric spaced
The following are equivalent

1 T has exactly one invariant probability measure µ
2 For every continuous fir R for every wer
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In this case we call T uniquely ergodic
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Ergodicity and Mining
Def Two measurable events A B are called

independent if MAnB MCA PCB
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r F p is called mining if for all A BeFe

µ An B KLAIMB 0

The event f ff
is asymp independent of

Egg
A

TIB
A

B



Ergodicity is slightly weaker than mining

The A prob preservingmap T is ergodic if and

only if for every A B measurable
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What happens if we replace by 1 1

Def A probability preservingmap T is called

weaklymining if for all A B measurable
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IvonNeumanne The following are equivalent
1 T is weak mixing
2 Every µ a e eigenfunction of T is µ a e comta
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