Lecture 3: Entropy

For each probability preserving map T on a probability space (S,F,µ) we will define a number h<sub>µ</sub>(T) called the <u>metric entropy</u> (or <u>Kolmogorov-Sinaï entropy</u>). Then we will interpret it in terms of: • the size of coarse grained phase space • the information production rate · the capacity of T to generate purely random signels The metric entropy is defined using "dynamics of partitions" so we begin this. Dynamics of Partitions Def- A finite measurable partition of a probability space (R,F,p) is a collection d={A,...,A,fs.t. • A1, ..., AN are measurable sets (called the "atoms") A; ∩A; = φ fr i ≠ j •  $A_{n} \cup \cdots \cup A_{n} = \mathcal{L}$ We let d(x) := the element of & which contains x Given two partition d= {A, ..., A, B= {B, ..., B, }  $dVB := \{A_i \cap B_j \mid i = 1, ..., N\}$ 

How to think about this object?  
(1) experiment with N possible outcomes  

$$A_i = \{ \omega \in \Omega : \text{ the experiment gives it outcomes} \}$$
  
 $d(\omega) := \text{ the outcome when the state B of
For example, in lecture 1 we saw that
when we tors a coin with {vertical velocity of then
 $d = \{ (\sigma, \omega) : \text{``heads'`} \}, \{ (\sigma, \omega) : \text{``fails''} \} \}$   
is the partition  
 $\omega = \{ (while of (while of (while of (while of (while of (while (while$$ 

Given two "experiments" d, ß, if we canny out both at the same time, the possib outcomes are (i.j) = ( ith outcome jth outcome) and we obtain dvß: A: OB; = { west: d exp. gives ith outcome } B exp. gives jth outcome }

| A calculation: | Suppose we repeat an "experiment" |
|----------------|-----------------------------------|
|                | $j$ at times $t=0, 1, 2,$         |
|                | information we have at time n?    |

| time | state | hew<br>information                                       | accumulated<br>information |
|------|-------|----------------------------------------------------------|----------------------------|
| Ø    | ယ     | $\omega \in A_{i_0} = d(\omega)$                         | Qe Aio                     |
| ٦    | T(w)  | $T(\omega) \in A_{i_{n}} = \mathcal{A}(T\omega)$         | ω ε A <sub>io</sub> n TA:  |
| 2    | 7(6)  | $T^{2}(\omega) \in A_{i_{1}} = \mathcal{L}(T^{2}\omega)$ | WEA: nTA: NTA.             |
| :    | ÷     | :                                                        | :                          |
| N-1  | Τ"(ω) | $T'(\omega) \in A_{i} := \mathcal{L}(T(\omega))$         | Ge ÖTJA;                   |

Let 
$$\overline{\tau}^{j} \lambda = \{\overline{\tau}^{j} A_{i}: A_{i} \in \mathcal{A}\}, \text{ then}$$
  
 $(\overline{\tau}^{j} \lambda)(\omega) = \lambda(\overline{\tau}^{j} \omega) \quad (\text{check } !)$   
The information at time  $n$  is coded by the partition  
 $\lambda_{n} = \bigvee_{j=0}^{n-1} \overline{\tau}^{j} \lambda = \{\bigcap_{j=0}^{n-1} \overline{\tau}^{j} A_{ij}: A_{ij}, ..., A_{inj} \in \mathcal{A}\}, \dots$   
Notice that the information grows  
the cardinality of the partition grows  
but the elements  $-$  ... decrease

| $\frac{E \times ample}{1}: T: [0, i] \rightarrow [0, i]  T(as) = 2a \pmod{n}.$<br>In binary expansions, $2 \times 0. \omega_1 \omega_1 \cdots = \omega_1 \cdot \omega_2 \omega_3 \cdots s_0$ |                                              |                                                |                        |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------|------------------------|--|--|
| $T(0,\omega_1\omega_2\omega_3\cdots)=0.\omega_2\omega_3\cdots.$                                                                                                                              |                                              |                                                |                        |  |  |
| Suppose we can only measure the first binary digit:                                                                                                                                          |                                              |                                                |                        |  |  |
| time                                                                                                                                                                                         | state                                        | hes isfo                                       | tatel ilfo             |  |  |
| ٥                                                                                                                                                                                            | 4=0.0,02                                     | ω                                              | ۵,                     |  |  |
| 1                                                                                                                                                                                            | $T(\omega) = 0_{\omega_2} \omega_{s} \cdots$ | 6J_2                                           | (S1, 0L                |  |  |
| •                                                                                                                                                                                            | :                                            | *                                              | :                      |  |  |
| M-(                                                                                                                                                                                          | $T(\omega) = 0.00 \omega \cdots$             | ۵,                                             | (),, () <sub>A-1</sub> |  |  |
| Thus:                                                                                                                                                                                        | $d_{h} = \bigvee_{i=1}^{n-i} \tau_{i}^{i} =$ | partition into<br>dyadic intowe<br>length 7/2n | $2^n$<br>l, cf         |  |  |

## The Entropy of a Partition

Def- Let d={A1,...,AN} be a finite measurable partition of a probability space (R,F,p).  $H_{\mu}(\alpha) := - \sum_{A \in \alpha} \mu(A) \ln \mu(A)$  $h_{\mu}(T, \chi) := \lim_{n \to \infty} \frac{1}{n} H_{\mu}(\chi_{n}), \quad \chi_{n} = \bigvee_{j=0}^{n-r} T^{j} \chi_{j}.$  $h_{\mu}(T) := \sup \{h_{\mu}(T, \alpha) : \alpha \text{ a finite measurable }\}$  $\begin{bmatrix} \underline{Thm} (Krieger) : If h_{\mu}(\tau) < \infty, & \text{then there exist} \\ finite partitions & s.t. & h_{\mu}(\tau, \lambda) = h_{\mu}(\tau) = \max_{possible} \end{bmatrix}$ Example : Let •  $T(\omega) = 2\omega \mod 1$  on [0,1]•  $\mu = length$  measure (Lebesgue measure) • x = { [0, 1/2); [1/2, 1) }. Then: d = nth dyada partition  $H_{\mu}(a_{\mu}) = 2^{n} \times \left(-\frac{1}{2^{n}} \ln \frac{1}{2^{n}}\right) = w \ln 2$ . # intervals Z"n ln2  $h_{\mu}(\tau_{\mathcal{A}}) = \lim_{h \to \infty} \frac{1}{h} H_{\mu}(\mathcal{A}_{\mu}) = \ln 2.$ It can be shown that hy (Trd) = hy (T).

Entropy and "the Volume of Coarse Grained Space"

Think of  $d_n = \{ d_n(\omega) : \omega \in \mathcal{R} \}$  as of a coarse-graining of the observer's information on  $\mathcal{R}$ .

Shannon-McKillan-Breiman Thm: Let T be an ergodic probability preserving map on a probability space (SZ,F.p). For every finite measurable partition of (1) for µ-a.e. WEJL,  $-\frac{n}{n}\log\mu(d_{n}(\omega)) \xrightarrow{n \to a} h_{\mu}(T, \alpha)$ (2) for every E>0, for all n large enough we can decompose  $\Omega = \Omega_{main} \cup \Omega_{neglijible}$ so that: (a)  $\mu \left( \mathcal{S}_{negligike} \right) < \epsilon$ (b)  $\mathcal{Q}_{main} = \text{union of } e^{n(h_{\mu}(T, \lambda) \pm \epsilon)}$ elements of dr, each of size en(hp(Tp) te)



All such functions are positively proportional to  

$$I_{\mu}(E) := -\ln \mu(E)$$
(in computer science, people use  $\log_2$ ).

Notice Khat

$$H_{\mu}(d) = -\sum_{A \in d} \mu(A) \ln \mu(A)$$

$$= \int_{A \in d} \sum_{A \in d} \Lambda(a) \cdot I_{\mu}(A) d\mu$$

$$= \int_{\pi} I_{\mu}(d)(a) d\mu$$
where  $I_{\mu}(d)(a) = I_{\mu}(d(a))$ . Observe:  
He information we gain in performing  
the information we gain in performing  
at state  $\omega$ 

• 
$$H_{\mu}(z) =$$
 when performing the exponent  
(over all  $\omega \in SZ$ )

If we repeat an experiment  $\alpha$  at times t=0, 1, ...then at time n-1 we know  $d_n(\omega)$ , and the amount of information we have  $\pi I_{\mu}(d_{\mu}(\omega)) = -\log \mu(d_{\mu}(\omega))$ . <u>Corollary</u>. Under the conditions of the Shannon-

McMillon-Breiman theorem, for p-o.e. a

$$\lim_{n \to \infty} \frac{1}{n} I_{\mu} (\alpha_{\mu}(\omega)) = h_{\mu}(T, z)$$

"information production rale"

Define 
$$H_{\mu}(2|\beta) := H_{\mu}(2\nu\beta) - H_{\mu}(\beta)$$
  
= mean additional information in  $\alpha$   
given we already know  $\beta$ .

<u>Rokhlin Formula</u>: Under the assumptions of SMB thm, for every finite measurable partition of,

If hp(T,2)>0, we still have much to learn, even at time n>>>!

## Entropy and Deterministic Chaos

Deterministic Chaos: The ability of deterministic systems to produce behavior which appears random. The "most random stochastic process":  $\frac{\text{Def }}{\text{Def }} \text{ Let } (p_1, ..., p_N) \text{ be a probability vector, i.e.} \\ 0 \leq p_i \leq 1 \text{ and } p_i + \cdots + p_N = 1. \\ A \quad \underline{\text{Bernoulli process}} \quad \mathbb{B}(p_1, ..., p_N) \text{ is a} \\ \text{bi-infinite sequence of independent random variables} \\ \{X_i\}_{i \in \mathbb{Z}} \quad \text{S.t. Prob}(X_i = \overline{F}) = p_{\overline{F}} \quad (\overline{T} = 1, ..., N)$ 

Def ? Let T be an invertible map on a probability space. We say that T <u>simulates a Bernoulli procen</u>  $B(p_1, ..., p_N)$ , if I measurable function  $f: S \longrightarrow \{1, ..., N\}$ s.t.  $\{f_0, T^k\}_{k \in \mathbb{Z}}$  is a Bernoulli process  $B(p_1, ..., p_N)$ 

In other words, not knowing W, we cannot distinguish using the methods of statistics above the time series if(Ticor): n \in 23 from a pusely random signal.

Recall:

Def- The <u>metric entropy</u> of a probability preserving map T on a probability space (SR, F. p) D  $h_{\mu}(\tau) = \sup \{h_{\mu}(\tau, z): \text{ measurable partition }\}$ Sinai's Factor Thm. Let T be an invertible probability preserving map with entropy hp(T). Let p= (p, ..., p) be a pabability vector. (i) If  $-\sum_{i=1}^{n} p_i \ln p_i = h_p(\tau)$ , then T simulates a Bernoulli procen B(p,,..., pA) (2) If - Zpilnpi > hr(T), then it doesn't.

In Summary :

(positive metric) (=> (=> experiment x) entropy) (=> (=> (=> completely) random looking) time series

Take L= {{west: f(w)=k} | k=1, ..., N}