
 

Lecture 3 Entropy
For each probability preservingmap T on a probability

space R F µ we will define a number halt
called the metric entropy or Kolmogorov Sinai entropy
Then we will interpret it in terms of
the size of coarse grained phase space
the information production rate

the capacity of T to generate purely random signals

The metric entropy is defined using dynamicsof
partitions so we begin this

DynamicsofPartition

Def.tt finite measurable partition of a probability
space R F p is a collection 2 4An An sit

An An are measurable sets called the atoms

AinAj for it

Anu uAn R

We let α x the element of α which contains a

Given two partition α A Ant β Be B

dup AinBjl



How to think about this object
experiment with N possible outcomes

Ai over the experimentgives ith outcome

α a the outcome when the state is a

For example in lecture 1 we saw that
vertical velocity orwhen we toss a coin with angular velocity w

then

cr.at head co w tail t
is the partition

bands begin
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Given two experiments 2 β if we carry out
both at the same time the possib outcomes are

a I p p
and we obtain αVβ

A dB foes
α exp given its outcome

β exp gives 5ᵗʰ outcome



Information Imagine we don't know a filly
we only know α a element of α containing a

With thin info

can distinguish an w in different elements of α
It in in the same elements of

Fore Suppose I Coils

α information on 1ˢᵗ binary digit of a

β i 1ˢᵗ n y

10 11 110
4in

07 0,01 1,01

α β up

Coarse Graining
α coarse graining offobserveriff on aer

i

We're not coarse graining the system
We're coarse graining the observer

bad for simulations
good for theory the dynamite stays the same



A calculation Suppose we repeat an experiment
An An at times 1 0 1,2

What is the information we have at time n

time state
new accumulated
information information

0 W WEA L a at Ai

1 Tla TIG EA α Ta WE AignTAi

2 Flat Tfale A α Tw we AigT'Ai n Ai

E E E
n t T far TCal EAi titan we it Ai

Let F'α TIA A e α then

Tia a α Tia check

The information at time n is coded by the partition

α_ IT Ai Aj n.Ain.es

Notice that the information grows
the cardinality of the partition grow

but the elements in decrease



Example T oil o.is To 20 mods

In binary expansion 2 0 W W W wzw so

O W W W 0.0203

Suppose we can only measure the first binarydigit
α ffo.lk 1,17

time state new info total info

0 4 0.0 W W W

1 To O.WzW Wz We We

M t T a 0wnwn.si On_ we wa t

Thus α α
partition into 2
dyadic interval of
length



IE Iiiiniiemeanra.ee
partition of a probability space A F p

Hp x TIPCATLnp A

halt α him I Hulant 2n α

hp T sup h CT α part ftp.termeasurable

pa
im It 4

t's then there exist

hylt.at hast up L

Example Let

T a 2W mod 1 on fo i

µ length measure Lebesgue measure

10,141 14,11 Then

α nth dyadi partition

Him 2 2

intervals

So he Tak him Hp 41 In 2
hr

It can be shown that hr T2 hp Tl



Entropy and the Volume of Coarse GrainedSpace

Think of αn ancal war as of a coarse graining

of the observer's information on R

Shannon M Millan Breiman Thm Let T be an ergodi

probability preserving map on a probability space
r.F.pe For every finite measurable partition α

1 for µ a e wed

In log µ afar hpfT.at

12 for every c so for all n large enough
we can decompose

I I
main

V1 negligible
so that

a µ R negligible
CE

b Rmain union of
ehchplt.at f

elements of an each of size e Chita



Thus the cardinality of coarse grained space
is approximately exp n Chilt a e

Approximately
after removing a set

of measure CE

III
q negligible

remain total mass

Entropy and Information Production Rate
We wish to quantify the information content

In E of the statement o belongs to E

E learning function of GCE
b If E continuous function of pele

c If A B are independent i e pecans plagues
then I

µ ARB IMAI I B



All such functions are positively proportional to

Ip E In p E

in computer science people use log

Notice that

Hy 2 24m
In pca

5 Email Ipla de
r

ftp.lallaldp
where I a a I awl Observe

the information we gain in performing
I 2 w the experiment when the system is

at state w

Imead information we gain
H d when performing the experiment

overall war



If we repeat an experiment α at times t o

then at time n t we know αn w and the amount

of information we have a Infantal logplantar

Corollary Under the conditions of the Shannon
McMillan Breiman theorem for p a e a

him F aan h CT α

infrmation podationtrate

Entropy and Unpredictability

Define Hp 2187 Halaupt Hy β
mean additional information in α

given we already know β
Rokhlin Formula Under the assumption of SMB them
for every finite measurable partition α

hp T.at him Hy
Than I am

no

learning given that we
alreadyknow

α Tw
Lful α Tail α Thot

If hut 2 so we still have much to learn even at time nosi
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systems to produce behavior which appears random

The most random stochastic procen

Def Let Ipi put be a probability vector i e

O Epiel and pit Pw

A Bernoulli process Blp pn is a

bi infinite sequence of independent random variable
Xi i a sit Prob X Pg 7 1 nl

Defe Let T be an invertible map on a probability

space We say that T simulates a Bernoulli prosen

Blpi ph if measurable function

f S 1 N

sit fat is a Bernoulli process Bfp pool

In other words not knowing W we cannot distinguish

using the methods of statistics alone the time series
f Tian he 2 from a purely random signal



Recall

Def The metric entropy of a probability preserving
map T on a probability space R.F.pl D

hy 7 Sap hp T α
α finite
measurable partition

Sinai's Factor Thm Let T be an invertible

probability preservingmap with entropy hp T Let

p pi pw be a probability vector

117 If Epi lap hp Tl then T simulates

a Bernoulli prosen B pi pn

2 If _Epitapi hyfTl then it doesn't

In summary

tie meth

i hffentropy
time series

Take L Wes flat k k 1 N


