Lecture 3: Entropy
For each probability preserving map T on a probability space $(\Omega, \mathcal{F}, \mu)$ we will define a number $h_{\mu}(T)$ called the metric entropy (or Kolmoggrav - Sinai entropy). Then we will interpret it in terms of:

- the size of coarse grained phase space
- the information production rate
- the capacity of T to generate purely random signals

The metric entropy is defined using "dynamics of partitions", so we begin this.

Dynamics of Partitions
Def n. A finite measurable partition of a probability space $\left(\Omega, F_{1},\right)$ is a collection $\alpha=\left\{A_{A}, \ldots, A_{N}\right\}$ s.t:

- A_{1}, \ldots, A_{N} are measurable sets (called the "atoms")
- $A_{i} \cap A_{j}=\phi$ for $i \neq j$
- $A_{A} \cup \cdots \cup A_{N}=\Omega$

We let $\alpha(x):=$ the element of α which contains x
Given two partition $\alpha=\left\{A_{1}, \ldots, A_{N}\right\}, \beta=\left\{B_{1}, \ldots, B_{\mu}\right\}$

$$
\alpha v \beta:=\left\{A_{i} B_{j} \left\lvert\, \begin{array}{l}
i=1, \ldots, N \\
j=1, \ldots, \mu
\end{array}\right.\right\}
$$

How to think about this object?
(1) experiment with N prsible outcomes
$A_{i}=\{\omega \in \Omega$: the experiment gives itch outcome $\}$
$\alpha(a):=$ the outcome when the state is as
For example, in lecture 1 we say that when we tors a coin with $\left\{\begin{array}{l}\text { vertical velocity o } \\ \text { angular velocity } \\ \omega\end{array}\right.$, then

$$
\alpha=\{\{(v, \omega): \text { "head," }\},\{(\sigma, \omega) \text { : "fail, } t\}
$$

is the partition

$$
\alpha=\left\{\begin{array}{l}
\text { unit of union of } \\
\text { united, bend } \\
\text { bouse }
\end{array}\right\}
$$

Given two "experiments" α, β, if we cary out both at the save time, the posit outcomes are

$$
(i, j)=\left(\begin{array}{cc}
i^{\text {th }} \text { outcome } & j^{\text {th }} \text { oufcione } \\
\text { in eq. } \alpha ; & \text { in exp. } \beta
\end{array}\right)
$$

and we obtain $\alpha v \beta$:

$$
A_{i} \cap B_{j}=\left\{\omega \in \Omega: \begin{array}{ll}
\alpha & \text { exp. ion } \\
& \beta \text { exp } \\
\text { gins } & \text { outcome } \\
\text { the } & \text { outcome }
\end{array}\right\}
$$

(2) Information : Imagine we don't know w filly, we only know $\alpha(a)=$ element of α containing as. With this info

* can distinguish ω_{1}, ω_{2} in different elements of α
* Cannot \qquad 1 _ in the same denents of α.
For example: Suppose $\Omega=[0,1]^{2}$
- $\alpha=$ information on $1^{\text {st }}$ binary digit of x
- $\beta=\square 1^{\text {st }} \ldots y$

α

$\alpha v \beta$
(3) Coarse Gaining:

$$
\alpha=\text { Coarse graining of observers info on } \omega \in \Omega
$$

Were not coarse graining the system! Were coarsegraining the obsezver.

- bad for simulations
- good for theory (the dynamics stays the same)

A calculation: Suppose we repeat an "experiment" $\alpha=\left\{A_{1}, A_{2}, \ldots\right\}$ at times $t=0,1,2, \ldots$. What is the information we have at time n ?

time	state	new information	accumulated information
0	ω	$\omega \in A_{i i_{0}}=\alpha(\omega)$	$\omega \in A_{i_{0}}$
1	$T(\omega)$	$T(\omega) \in A_{i_{i}}=\alpha(T \omega)$	$\omega \in A_{i_{0}} \cap T^{-1} A_{i_{1}}$
2	$T^{2}(\omega)$	$T^{2}(\omega) \in A_{i_{i}}=\alpha\left(T^{2} \omega\right)$	$\omega \in A_{i} \cap T_{0}^{-1} A_{i_{1}} n T^{-2} A_{i u}$
\vdots	\vdots	\vdots	\vdots
$n-1$	$T^{n-1}(\omega)$	$T^{n-1}(\omega) \in A_{i}:=\alpha\left(T^{n-1}(\omega)\right)$	$\omega \in \bigcap_{j=1}^{n-1} T^{-j} A_{i j}$

Let $T^{-j} \alpha=\left\{T^{-j} A_{i}: A_{i} \in \alpha\right\}$, then

$$
\left(T^{j} \alpha\right)(\omega)=\alpha\left(T^{j} \omega\right) \quad(\operatorname{check})
$$

The information at time n is coded by the partition

$$
\alpha_{n}=\bigvee_{j=0}^{n-1} T^{-j} \alpha=\left\{\bigcap_{j=0}^{n-1} T^{j} A_{i j}: A_{i}, \ldots, A_{i_{n-}} \in \alpha\right\}
$$

Notice that the information grows
the cardinality of the partition grows
but the elements " decrease

Example: $T:[0,1] \rightarrow[0,1], T(\omega)=2 \omega(\bmod 1)$. In binary expansions, $2 \times 0 . \omega_{1} \omega_{2} \cdots=\omega_{1} \cdot \omega_{2} \omega_{3} \cdots$ so

$$
T\left(0, \omega_{1} \omega_{2} \omega_{3} \cdots\right)=0 . \omega_{2} \omega_{3} \cdots
$$

Suppose we can only measure the find binary digit:

$$
\alpha=-\{[0,1 / 2) ;[1 / 2,1]\}
$$

time	state	hew info	total info
0	$\omega=0 . \omega_{1} \omega_{2} \cdots$	ω_{1}	ω_{1}
1	$T(\omega)=0 . \omega_{2} \omega_{3} \cdots$	ω_{2}	ω_{1}, ω_{2}
\vdots	\vdots	\vdots	\vdots
$n-1$	$T^{n-1}(\omega)=0 . \omega_{n} \omega_{n+1}$	ω_{n-1}	$\omega_{1}, \cdots, \omega_{n-1}$

Thus: $\alpha_{n}=V_{i=1}^{n-1} T^{-i} \alpha=\begin{gathered}\text { partition int } 2^{n} \\ \text { dyadic intancel, of } \\ \text { len gr }\end{gathered}$ length 7/2n

The Entropy of a Partition
Def $=$. Let $\alpha=\left\{A_{1}, \ldots, A_{N}\right\}$ be a finite measurable partition of a probability space (Ω, F, μ).

$$
\begin{aligned}
& H_{\mu}(\alpha):=-\sum_{A \in \alpha} \mu(A) \ln \mu(A) \\
& h_{\mu}(T, \alpha):=\lim _{n \rightarrow \infty} \frac{1}{n} H_{\mu}\left(\alpha_{n}\right), \alpha_{n}=\bigcup_{j=0}^{n-1} T^{-j} \alpha .
\end{aligned}
$$

$h_{p}(T):=\sup \left\{h_{\mu}(T, \alpha): \underset{\text { partition of }}{\alpha} \Omega\right.$
$\left[\begin{array}{l}\text { Thu (Krieger): If } h_{\mu}(\tau)<\infty \text {, then there exist } \\ \text { finite partitions } \alpha \\ \left.\text { sit. } \quad h_{\mu}(T, \alpha)=h_{\mu}(T)=\begin{array}{c}\text { maximel } \\ \text { posihe. }\end{array}\right]\end{array}\right]$
Example : Let

- $T(\omega)=2 \omega \bmod 1$ on $[0,1]$
- $\mu=$ length measure (Lebesgue measure)
- $\alpha=\{[0,1 / 2) ;[1 / 2,1]\}$. Then: $\alpha_{h}=n^{\text {th }}$ dyad partition

$$
H_{\mu}^{h}\left(\alpha_{n}\right)=2^{n} \times\left(-\frac{1}{2^{n}} \ln \frac{1}{2^{n}}\right)=n \ln 2 .
$$

So $h_{r}(T, \alpha)=\lim _{n \rightarrow \infty} \frac{1}{n} H_{r}\left(\alpha_{r}\right)=\ln 2$.
It can be shown that $h_{\mu}\left(T_{\mu} \alpha\right)=h_{\mu}(T)$.

Entropy and "the Volume of Coarse Grained Space"
Think of $\alpha_{n}=\left\{\alpha_{n}(\omega): \omega \in \Omega\right\}$ as of a coarse-graining of the observer's information on Ω.

Shannon-McMillan-Breiman Thy: Let T be an ergodic probability preserving map on a probability space (Ω, F, μ). For every finite measurable partition α,
(1) for μ-ace. $\omega \in \Omega$,

$$
-\frac{1}{n} \log \mu\left(\alpha_{n}(\omega)\right) \underset{n \rightarrow \infty}{ } h_{\mu}\left(T_{1} \alpha\right)
$$

(2) for evens $\epsilon>0$, for all n large enough we can decompose

$$
\Omega=\Omega_{\text {main }} \cup \Omega_{\text {negligible }}
$$

So that:
(a) $\mu\left(\Omega_{\text {negligible }}\right)<\epsilon$
(b) $\Omega_{\text {main }}=$ union of $e^{n\left(h_{\mu}(T, \alpha) \pm \epsilon\right)}$
elements of α_{r}, each of size $e^{-n\left(h_{r}\left(T_{\mu}\right) \pm \epsilon\right)}$

Thus the cardinality of coarse grained space is approximately $\exp \left(n \cdot\left(h_{r}(T, \alpha) \pm \epsilon\right)\right)$.

$$
\text { "Approximately" }=\binom{\text { after removing a set }}{\text { of measure }<\epsilon}
$$

Entropy and Information Production Rate We wish to quantify the information content $I_{\mu}(E)$ of the statement "co belongs to E." Axioms:
(a) $I_{\mu}(E)=$ decreasing function of $\mu(E)$
(b) $I_{\mu}(E)=$ continuous function of $\mu(E)$
(c) If A, B are independent , i.e. $\mu(A \cap B)=\mu(A) \mu(B)$ then $I_{\mu}(A \cap B)=I_{r}(A)+I_{\mu}(B)$.

All such functions are positively proportional to

$$
I_{\mu}(E):=-\ln \mu(E)
$$

(in computer science, people use $\log _{2}$).
Notice that

$$
\begin{aligned}
H_{\mu}(\alpha) & =-\sum_{A \in \alpha} F^{(A) \ln \mu(A)} \\
& =\int_{\Omega} \sum_{A \in \alpha} 1_{A}(A) \cdot I_{\mu}(A) d \mu \\
& =\int_{\Omega} I_{\mu}(\alpha)(a) d \mu
\end{aligned}
$$

where $I_{\mu}(\alpha)(\omega)=I_{\mu}(\alpha(\omega))$. Observe:
the information we gain in performing

- $I_{\mu}(\alpha)(\omega)=$ the experiment when the system is at state ω
mean information we gain
- $H_{\mu}(\alpha)=$ when performing the experiment (over all $\omega \in \Omega$)

If we repeat an experiment α at times $t=0,1, \ldots$ then at time $n-1$ we know $\alpha_{n}(\omega)$, and the amount of information we have $\pi \quad I_{\mu}\left(\alpha_{k}(\omega)\right)=-\log \mu\left(\alpha_{n}(a)\right)$.
Corollary. Under the conditions of the Shannon-McMillan-Breiman theorem, for μ-a.e. as

$$
\lim _{n \rightarrow \infty} \frac{1}{n} I_{\mu}\left(\alpha_{n}(\omega)\right)=h_{\mu}(T, \alpha)
$$

"information production rate"
Entropy and Unpredictability
Define $H_{\mu}(\alpha \mid \beta):=H_{\mu}(\alpha v \beta)-H_{\mu}(\beta)$

$$
\begin{aligned}
& =\text { mean additional information in } \alpha \\
& \text { given we already know } \beta \text {. }
\end{aligned}
$$

Rokhlin Formula: Under the assumptions of SMS the, for every finite measurable partition α,

$$
\begin{aligned}
h_{\mu}(T, \alpha)= & \lim _{n \rightarrow \infty} H_{\mu}\left(T^{-n} \alpha \mid \alpha_{n}\right) \\
& \text { learning }^{\alpha\left(T^{n} \omega\right)} \quad \begin{array}{c}
\text { given that we } \\
\text { already knoll } \\
\\
\\
\\
\\
\end{array}(\omega), \alpha\left(T_{\omega}\right), \ldots, \alpha\left(T^{n-1} \alpha\right) .
\end{aligned}
$$

If $h_{\mu}(T, \alpha)>0$, we still have mach to beam, even af tire n>si!

Entropy and Deterministic Chaos
Deterministic Chaos: The ability of deterministic systems to produce behavior which appears random.

The "most random stochastic prices":
Def n. Let $\left(p_{1}, \ldots, p_{N}\right)$ be a probability vector, i.e. $0 \leqslant p_{i} \leqslant 1$ and $p_{1}+\cdots+p_{N}=1$.
A Bernoulli process $B\left(p_{1}, \ldots, p_{N}\right)$ is a bi-infinite sequence of independent random variables $\left\{X_{i}\right\}_{i \in \mathbb{Z}}$ s.t. $\operatorname{Prib}\left(X_{i}=\xi\right)=P_{\xi} \quad(\xi=1, \ldots, N)$

Def n. Let T be an invertible map on a probability space. We say that T simulates a Bernoulli proven $B\left(p_{1}, \cdots, p_{N}\right)$, if \exists measurable function

$$
f: \Omega \rightarrow\{1, \ldots, N\}
$$

st. $\left\{f_{0} T^{k}\right\}_{k \in \mathbb{Z}}$ is a Bernoulli process $B\left(p_{1},-, p_{N}\right)$
In other words, not knowing w, we cannot distinguish using the methods of statistics alone the tine serin $\left\{f\left(T^{n}(u)\right): n \in \mathbb{Z}\right\}$ from a purely random signal.

Recall:
Def - . The metric entropy of a probability preserving map T on a probability space (Ω, F, μ) i

$$
h_{\mu}(T)=\sup \left\{h_{\mu}(T, \alpha): \begin{array}{l}
\alpha \text { finite } \\
\text { measurable partition }
\end{array}\right\}
$$

Sinai's Factor Thu . Let T be an invertible probability preserving map with entropy $h_{p}(T)$. Let $p=\left(p_{1}, \cdots, p_{N}\right)$ be a pababiliz vector.
(1) If $-\sum_{i} p_{i} \ln p_{i} \leq h_{p}(T)$, then T simulates a Bernoulli proven $B\left(p_{9}, \cdots, p_{N}\right)$
(2) If $-\sum_{i} p_{i} \ln p_{i}>h_{r}(\tau)$, then it deesn't.

In summary:

$$
\binom{\text { positive metric }}{\text { entropy }} \Longleftrightarrow\left(\begin{array}{c}
\exists \text { experiment } \alpha \\
\text { with completely } \\
\text { random looking } \\
\text { time series }
\end{array}\right)
$$

Take $\alpha=\{\{\omega \in \Omega: f(\omega)=k\} \mid k=1, \ldots, N\}$

