Lecture 4: Lyapunov Exponents
Overview \& Spoilers
Last time, we found a necessary s sufficient condition for the ability of a prob. preserving map f to produce a purely random (= Bernoulli) time series: Positive entropy
Today, we ask: What dynamical mechanisms produce positive entropy?
The Answer (volume presewing case) Exponentil sensitivity to initial conditions:
"exponenticly small perturbations in some directions grow to order one after linear number of iteration"

The precise statement is infinitesimal, so we begin with a review of sone definitions from calculus on manholes.

Review of Differential Calculus on Manifold
Setup: M is a compact smooth Riemannian manhole of dimension d, and embedded in $\mathbb{R}^{N} ; f: M \rightarrow M$ differentiable

Tangent Space at $p \in M$:

$$
T_{p} M:=\left\{\dot{\gamma}(0): \begin{array}{l}
\gamma:(-\varepsilon, \varepsilon) \longrightarrow M \text { is a smooth } \\
\text { curve sit. } \gamma(0)=1
\end{array}\right\}
$$

Fact: $T_{p} M$ is a linear vector space of dim
Exponential Map: exp : $T_{p} M \rightarrow M$
 $\exp _{p}(\vec{v})=g_{\vec{v}}(\|\vec{v}\|)$, where $\quad g_{\vec{v}}(n)=\begin{aligned} & \text { geodesic form } p \\ & \text { in direction } \vec{v} /\|\vec{v}\|\end{aligned}$.
Fact: There is $r>0$ s.t. $\exp _{p}:\{\vec{v}:\|\vec{v}\|<r\} \rightarrow$ image Is smooth and invertible.

("radius of injectivity")
Corollary: Suppose $f: M \rightarrow M$ is smooth, then the following map is well-defined on a reigh of the origin $\underbrace{\exp _{f(p)}^{-1} \circ f \cdot \exp _{p}}_{\text {non- linear }}: \underbrace{T_{p} M}_{\text {linear vector spaces }} \longrightarrow \underbrace{T}_{f(p)}$
The Differential of f at $p: D f_{p}: T_{p} M \rightarrow T_{f(p)} M$
Def $\curvearrowleft 1$: The linearization of $\exp _{f(p)}^{-1} \cdot f \cdot \exp _{p}: T_{P}^{M \rightarrow T_{f()}}{ }^{M}$ at $\overrightarrow{0} \in T_{p} M$, i.e. the linear map sit.

$$
\left(\exp _{f(p)}^{-1} \cdot f \cdot \exp _{p}\right)(\overrightarrow{0}+t \vec{v})=\left(\exp _{f(p)}^{-1} \cdot f_{\cdot} \exp _{\overrightarrow{0}}\right)(\overrightarrow{0})+t \cdot D f_{p}(\vec{v})+O\left(t^{2}\right)
$$

Def 2 (coirdinate-free formula): Every $\vec{v} \in T_{p} M$ is the velocity vector $\dot{\gamma}_{\vec{v}}(0)$ of some carve $\gamma_{\vec{\sigma}}(\epsilon)$ on M sit. $\gamma_{\vec{v}}(0)=p$.

Doff- 3 (formula in coordinates): Fix $p \in M$ and two coordinate charts on neighborhoods of $p, f(p)$:

- $\left(x^{1}, \ldots, x^{d}\right)$ near $p, p=\left(x_{0}^{1}, \ldots, x_{0}^{d}\right)$
- $\left(y^{1}, \ldots, y^{d}\right)$ near $f(p), f(p)=\left(y_{0}^{n}, \cdots, y_{0}^{d}\right)$

We have the following natural bases for $T_{P} M, T_{f(P)} M$:

- $\vec{e}_{i}^{p}:=\left.\frac{d}{d t}\right|_{t=0} c_{i}^{p}(t), \quad c_{i}^{p}(t)=\vec{x}_{0}+t\left(\begin{array}{l}0 \\ i \\ i\end{array}\right) c^{i}$ in and.
- $\vec{e}_{i}^{f(p)}:=\left.\frac{d}{d t}\right|_{t=0} c_{i}^{f \varphi p}(t), c_{i}^{f(p)}(t)=\vec{y}_{0}+t\left(\begin{array}{l}0 \\ \vdots \\ \vdots\end{array}\right){ }^{i}$ in $\cos 1$
manifold
 P

Ford chart

$$
\vec{x}_{0}=\left(x_{0}^{1}, \ldots, x_{0}^{d}\right)
$$

Represent $f:\binom{$ neigh }{ of $p} \longrightarrow\binom{$ neigh }{$o f f(p)}$ in coordinates

$$
f\left(x^{1}, \ldots, x^{d}\right)=\left(\begin{array}{c}
y^{1}\left(x^{1}, \ldots, x^{d}\right) \\
\vdots \\
y^{d}\left(x^{1}, \ldots, x^{d}\right)
\end{array}\right)
$$

Then $\left(D f_{p}\right)\left(\sum_{i=1}^{d} \alpha_{i} \vec{e}_{i}^{p}\right)=\sum_{i=1}^{d} \beta_{i} \vec{e}_{i}^{f(p)}$, where

$$
\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{d}
\end{array}\right)=\left(\frac{\partial y_{i}}{\partial x_{j}}\left(x_{0}^{1}, \ldots, x_{0}^{d}\right)\right)_{d_{x_{d}}}\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{d}
\end{array}\right)
$$

Chain Rule: $\quad D f_{p}^{n}=D f_{f^{n-1}(p)} \circ \cdots \cdot D f_{f(p)} \cdot D f_{p}$
C^{2}-Diffeomorphism: A_{n} invertible map $f: M \rightarrow M$ s.t. f and f^{-1} are continuously differentiable twice, in coordinates.

Lyapunov Exponents
Oseledets Thu (part 1): Suppose $f: M \rightarrow M$ is a differ mosphism on a compact manifold M of $\operatorname{dim} d$, and μ is an invariant prob measure. Then for μ-ace. $p \in M$
(1) The following limit exists for all nou-zas $\vec{v} \in T_{p} M$:

$$
x_{p}(\vec{v})=\lim _{n \rightarrow \pm \Delta} \frac{1}{n} \log \left\|\nabla f_{p}^{n} \vec{v}\right\|
$$

(2) There are finitely many possible values (for each p): $x_{1}(p) \geqslant \cdots \geqslant x_{s(p)}(p)$ s.t.

$$
\forall \vec{v} \in T_{p} M,\{\overrightarrow{0}\}, \quad x_{p}(\vec{v}) \in\left\{x_{1}(p), \ldots, x_{s p p}(p)\right\}
$$

(3) Invariance: $x_{i}(f(p))=x_{i}(p), \quad s(f(p))=s(p)$ If μ is ergodic, then $\chi_{i}(p), s(p)$ are a.e. canst.
Terminology: $\chi_{p}(\vec{v})$ is celled the L-yganno eaptrent at p in direction \vec{v}.
Obscure: If $X_{p}(\vec{v})>0$, then we have exponential sensitionty to initial condition at p :

$$
f^{k}(\underbrace{\exp _{p}\left(\overrightarrow{0}+e^{-n x / 2} \vec{v}\right.}_{\text {exp. small port. of } p})) \approx \exp _{+\varphi}) \underbrace{\text {. }}_{\left.\begin{array}{c}
\text { size } \\
\text { be big for sone } \\
e^{(k-n / 2) x} \\
e_{\substack{\text { wise } \\
i \leqslant k \leq n}}^{-n x / 2} D f_{p}^{k}(\vec{v})
\end{array}\right)}
$$

Remark: If $x_{p}(\vec{v})>0$ for some $\vec{v} \in T_{p} M$, then $X_{p}(\vec{v})>0$ for "most" $\vec{v} \in T_{p} M$.

Indeed, $N=\left\{\vec{u} \in T_{p} M \mid X_{p}(\vec{u}) \leqslant 0\right\} \cup\{\overrightarrow{0}\}$ is a linear vector space (exercise), of dimemian $\npreceq \operatorname{dim} T_{p} M$ (because it's $\neq T_{p} M$).

Remark 2 : In the volume preserving case, if there is a \vec{b} with positive Leap exponent, then there must also be a \vec{v} with a negative Leap. exp. Otherisie, f^{n} expands the volume exponentially, which is impossible, since M is compact.

infinitesimal ball

Multiplication of Lyapunn Exponents
Suppose the Lyapunew exponents at p are $x_{1}>\cdots>x_{s}$. In general, $s \neq d$, so we feel that some x_{i} must appear with a "multiplicity". How to define it?
Attempt 1 (fails): $\left.\left.m_{i} \stackrel{?}{=} \operatorname{dim}\left\{\vec{v} \in T_{p} M: x_{p}(\vec{r})=x_{i}\right\} \cup\right\} \overrightarrow{0}\right\}$ This fails, because $\left\{\vec{v}: x_{p}(\vec{\sigma})=x_{i}\right\}$ is not a vector space. Choose \vec{u}_{1}, \vec{v}_{2} sit $X_{p}\left(v_{1}\right)<x_{p}\left(v_{2}\right)$.
Let $u_{ \pm}=v_{2} \pm v_{1}$

- $\chi_{p}\left(u_{ \pm}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \|\underbrace{\| D f^{n}\left(v_{2}\right)}_{e^{n x_{2}}} \pm \underbrace{D f^{n}\left(v_{1}\right)}_{e^{n x_{1}}}\|=\chi_{p}\left(v_{2}\right)$
- $x_{p}\left(u_{+}-u_{-}\right)=x_{p}\left(2 v_{1}\right)=x_{p}\left(v_{1}\right)$

So $u_{+}, u_{-} \in\left\{\vec{v}: x_{p}(\vec{v})=x_{i}\right\}$, bet $u_{+}-u_{-} \notin\left\{\vec{v}: x_{p}(\vec{v})=x_{i}\right\}$.
Attempt 2 (succeeds): Define

$$
V_{X_{i}}=\left\{\vec{u} \in T_{p} M: x(\vec{u}) \leq x_{i}\right\} \cup\{\overrightarrow{0}\}
$$

These are linear spaces (check!), and
(*) $\{0\} \nsubseteq V_{x_{s}} \nsubseteq V_{x_{s-1}} \underset{\neq}{c} \subset V_{x_{1}}=T_{p} M$
Def:. (*) is called the Lyapuras filtration.
The multiplicity of x_{i} is defined to be

$$
m_{i}:=\operatorname{dim} v_{x_{i}}-\operatorname{dim} v_{x_{i-1}}
$$

Lyapunov Exponents and Entropy
Thu (Ruelle's Inequality): Suppose $f: M \rightarrow M$ is a difteomosphism on a compact manifold, which preserver a finite invariant measure μ. Let $x_{1}(p) \geqslant \cdots \geqslant x_{s p p}(p)$ be the Lyapunan exponents, and let $m_{1} \varphi p, \ldots, m_{s(p)}(p)$ be their multiplicities. Then

$$
h_{\mu}(f) \leq \int_{M} \sum_{\left.i: x_{i} \varphi\right)>0} m_{i}(p) x_{i}(p) d \mu
$$

Corollary: If μ is ergodic, and $h_{p}(f)>0$, then f has exponential sensitionty to initial condition μ-a.e.

Thin (Pesin Entropy, Formula): Under the above condition, if μ is smooth (i.e. $\mu=$ density \times volume measwe), then

$$
h_{\mu}(f)=\int_{M} \sum_{i=x_{i}(p)>0} m_{i}(\varphi) x_{i}(p) d \mu
$$

Corollary: In the volume preserving case, the entropy is positive if and only if there is exponential senasituris to initial conolitias on a sot isth proitive volume.

The Oseledets Decomposition
Oseledet The (Part 2): Let f be a difteomopplisin on a compact smooth manifed M, and suppose μ is an invariant prob. measure. Let $X_{1}(p) \geqslant \cdots \geqslant x_{s p p}(p)$ denote the Lyapunns exponents, and let $m_{1}(\varphi), \cdots, m_{s(p)}(p)$ be their multiplicities. For μ-a.e. $p \in M$ we can decompose

$$
T_{p} M=H_{x_{1}}(p) \oplus \cdots \oplus H_{x_{s(p)}}(p) \quad \text { sit. }
$$

(1) $H_{x_{i}}(p)$ are linear vector spaces of $\operatorname{dim} m_{i}(p)$
(2) $X_{p}(\vec{v})=x_{i}(p)$ on $H_{x_{i}}(p) \backslash\{\overrightarrow{0}\}$
(3) Invariance: $D f_{p}\left[H_{x_{i}}(p)\right]=H_{x_{i}}(f(p))$
(4) $\left.\lim _{n \rightarrow \infty} \frac{1}{n} \log \right\rvert\, \Varangle\left(H_{x_{i}}\left(f^{n}(p)\right), H_{x_{j}}\left(f^{n}(p)\right) \mid=0 \quad(i \neq j)\right.$

Application 1 : For each $\vec{v}_{i} \in H_{x_{i}}\{0\}, x_{p}\left(\overrightarrow{v_{i}}\right)=x_{i}$

$$
\Rightarrow\left\|D f_{p}^{n}\left(\vec{v}_{i}\right)\right\|=e^{n x_{i}+o(n)}\|\vec{v}\| .
$$

Thus, the Oseledets Decompn $\vec{v}=\vec{v}_{x_{1}}+\cdots+\vec{v}_{x_{s}}$ splits \vec{v} into components lith difterat exp ratan of growth

Application 2: "Diagonalization" of $D f_{p}^{n}$.
For simplicity, suppose $\operatorname{dim} H=2$, and assume μ is ergodic, with positive entropy.

- By Ruelle's inequality, some Lyap. exp. is positive
- Also, some Lyap exp. is negative:
$h_{\mu}\left(f^{-1}\right) \equiv h_{\mu}(f)>0$, so by Ruelle's inequality check!
for μ-ace. $p, \exists \vec{v} \in T_{p} M$ sit.

$$
\begin{aligned}
0< & \chi_{p}\left(f^{-1}, \vec{v}\right)=\lim _{n \rightarrow \pm \infty} \frac{1}{n} \log \left\|D f_{p}^{-n} \vec{v}\right\| \\
& =\lim _{n \rightarrow \pm \infty} \frac{1}{-n} \log \left\|D f_{p}^{+n} \vec{v}\right\|=-x_{p}(f, v) \\
\Rightarrow & x_{p}(f, \vec{v})<0
\end{aligned}
$$

Thus we must have two different Lgapann exponents, one x^{4} positive, and one x^{s} negative.

Necenarily, in the Oseledets decompan

$$
T_{p} M=H_{x^{n}}(p) \oplus H_{x^{s}}(p)
$$

$H_{x^{p}}(p)$ and $H_{x^{s}}(p)$ are ore-divensional.

Chore unit vectors $\underbrace{\vec{e}^{u}(p) \in H_{x^{n}}(p)}_{\begin{array}{c}\text { "unstable" } \\ \text { direction }\end{array}}, \underbrace{\vec{e}(p) \in H_{x^{s}}(p) \text {. }}_{\begin{array}{c}\text { "stable" } \\ \text { direction }\end{array}}$
By the invariance property $D f_{p}\left(H_{x_{i}}(p)\right)=H_{x_{i}}\left(f_{p}\right)$, $D f_{p}\left[S_{\text {pan }}\left\{\vec{e}^{t}(p)\right\}\right]=S_{p a n}\left\{\vec{e}^{t}(f(p))\right\} \quad(t=u, s)$ Therefore

$$
\begin{aligned}
& \left(D f_{p}\right)\left(\vec{e}^{u}(p)\right)= \pm\left\|D f_{p} \vec{e}^{u}(p)\right\| \cdot \vec{e}^{u}(f(p)) \\
& \left(D f_{p}\right)\left(\vec{e}^{s}(p)\right)= \pm\left\|D f_{p} \vec{e}^{s}(p)\right\| \cdot \vec{e}^{s}(f(p))
\end{aligned}
$$

Define $C_{p}: \mathbb{R}^{2} \rightarrow T_{p} M$ by

$$
C_{p}\binom{1}{0}=\alpha(p) \vec{e}^{s}(p), \quad C_{p}\binom{0}{1}=\beta(p) \vec{e}^{4} C_{p}
$$

$(\alpha(\cdot), \beta(\cdot)$ to be determined later). Then
$\binom{1}{0} \xrightarrow{C_{p}} \alpha(p) e^{\prime}(p) \xrightarrow{D f_{p}}+\alpha(p)\left\|D f_{p} e^{3}(p)\right\| e^{s}(f(p))$

$$
\xrightarrow{C_{f}((p)} \pm \frac{\alpha(p)}{\alpha(f(p))}\left\|D f_{p} e^{s}(p)\right\|\binom{1}{0}
$$

We obtained:

$$
\left(C_{f(p)}^{-1} \cdot D f_{p} \cdot C_{p}\right)\binom{1}{0}= \pm \frac{\alpha(p)}{\alpha(f(p))}\left\|D f_{p} e^{s}(p)\right\| \cdot\binom{1}{1}
$$

Similarly,

$$
\left(c_{f(p)}^{-1} \cdot D f_{p} \cdot c_{p}\right)\binom{1}{0}= \pm \frac{\beta(p)}{\beta(f(p))}\left\|D f_{p} e^{s}(p)\right\| \cdot\binom{0}{1}
$$

In summary

$$
C_{f(p)}^{-1} \cdot D f_{p} \cdot C_{p}=\left(\begin{array}{cc}
\lambda^{u}(p) & 0 \\
0 & \lambda_{(p)}^{s}
\end{array}\right)
$$

where $\lambda^{n}(\varphi)= \pm \frac{\alpha(p)}{\alpha(f(p))}\left\|D f_{p} \vec{e}^{s}(p)\right\|$

$$
\lambda^{s}(p)= \pm \frac{\beta(p)}{\beta\left(f_{p}\right)}\left\|\nabla f_{p} \vec{e}^{a}(p)\right\|
$$

A "good choice" of $\alpha(p), \beta(p)$ gives:
Oseledets - Pesin Reduction: C an construct $C_{p}: \mathbb{R}^{2}-T_{p}$

$$
C_{f(p)}^{-r} \circ D f_{p} \circ c_{p}=\left(\begin{array}{cc}
\lambda^{n}(p) & 0 \\
0 & \lambda^{s}(p)
\end{array}\right), \quad \left\lvert\, \begin{aligned}
& \left|\lambda^{n}(p)\right|>e^{x_{u}-\varepsilon}>1 \\
& \left|\lambda^{s}(p)\right|<e^{x_{s}+\varepsilon}<!
\end{aligned}\right.
$$

In higher dim, the Oseledets-Pesin Reduction says that for some family of C_{p},

$$
C_{f^{n}(p)}^{-1} D f_{p}^{n} C_{p}=\left(\begin{array}{ccc}
B_{x_{1}}^{(n)} & & \\
& & 0 \\
0 & \ddots & B_{x_{s}^{(n)}}^{(n)}
\end{array}\right)
$$

where $B_{X_{i}}^{(n)}$ are $m_{i} \times m_{i}$ bliclas $\left(m_{i}=\right.$ malt. of $\left.X_{i}\right)$ sit.

$$
\left\|B_{x_{i}}^{(n)} \vec{v}\right\|=e^{n\left(x_{i} \pm \varepsilon\right)}\|\vec{v}\| \text { on } \mathbb{R}^{m_{i}}
$$

Summary: The Oseledefis The allows to chose bases $\left\{C_{p}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \ldots, C_{p}\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)\right\}$ for $T_{p} M$ in such a way that $C_{f^{n}(p)}^{-1} \circ D f_{p}^{n} \cdot C_{p}$ have diagond block form.
In the too-divensioual, positive entropy, case, the resulting form is a hyperbolic diagonal matri

$$
C_{f^{n}(p)}^{-1} \cdot D f_{p}^{n} \cdot C_{p}=\left(\begin{array}{cc}
\lambda_{n}^{(n)} & 0 \\
0 & \lambda_{s}^{(n)}
\end{array}\right), \begin{aligned}
& \left.\left|\lambda_{k}^{(n)}\right|>e^{n\left(x_{L}-\varepsilon\right)}, \begin{array}{l}
\left|\lambda_{s}^{(n)}\right|<e^{n}\left(x_{s}+\varepsilon\right) \\
\end{array} \quad . \begin{array}{ll}
\end{array}\right)
\end{aligned}
$$

