You are here

Upcoming Seminars

TuesdayMay 22, 201811:15
Algebraic Geometry and Representation Theory SeminarRoom 155
Speaker:Itay Glazer Title:On singularity properties of convolution of algebraic morphisms Abstract:opens in new windowin html    pdfopens in new window

In analysis, a convolution of two functions usually results in a smoother, better behaved function. Given two morphisms f,g from algebraic varieties X,Y to an algebraic group G, one can define a notion of convolution of these morphisms. Analogously to the analytic situation, this operation yields a morphism (from X x Y to G) with improved smoothness properties.

In this talk, I will define a convolution operation and discuss some of its properties. I will then present a recent result; if G is an algebraic group, X is smooth and absolutely irreducible, and f:X-->G is a dominant map, then after finitely many self convolutions of f, we obtain a morphism with the property of being flat with fibers of rational singularities (a property which we call (FRS)).

Moreover, Aizenbud and Avni showed that the (FRS) property has an equivalent analytic characterization, which leads to various applications such as counting points of schemes over finite rings, representation growth of certain compact p-adic groups and arithmetic groups of higher rank, and random walks on (algebraic families of) finite groups. We will discuss some of these applications, and maybe some of the main ideas of the proof of the above result.

Joint with Yotam Hendel.

MondayMay 28, 201814:30
Foundations of Computer Science SeminarRoom 155
Speaker:Kevin Leyton-Brown Title:Learning as a Tool for Algorithm Design and Beyond-Worst-Case AnalysisAbstract:opens in new windowin html    pdfopens in new window

All known algorithms for solving NP-complete problems require exponential time in the worst case; however, these algorithms nevertheless solve many problems of practical importance astoundingly quickly, and are hence relied upon in a broad range of applications. This talk is built around the observation that "Empirical Hardness Models" - statistical models that predict algorithm runtime on novel instances from a given distribution - work surprisingly well. These models can serve as powerful tools for algorithm design, specifically by facilitating automated methods for algorithm design and for constructing algorithm portfolios. They also offer a statistical alternative to beyond-worst-case analysis and a starting point for theoretical investigations.

bio at


TuesdayMay 29, 201811:15
Algebraic Geometry and Representation Theory SeminarRoom 155
Speaker:Max Gurevich Title:Branching laws for non-generic representationsAbstract:opens in new windowin html    pdfopens in new window

The celebrated Gan-Gross-Prasad conjectures aim to describe the branching behavior of representations of classical groups, i.e., the decomposition of irreducible representations when restricted to a lower rank subgroup.

These conjectures, whose global/automorphic version bear significance in number theory, have thus far been formulated and resolved for the generic case.

In this talk, I will present a newly formulated rule in the p-adic setting (again conjectured by G-G-P) for restriction of representations in non-generic Arthur packets of GL_n.

Progress towards the proof of the new rule takes the problem into the rapidly developing subject of quantum affine algebras. These techniques use a version of the Schur-Weyl duality for affine Hecke algebras, combined with new combinatorial information on parabolic induction extracted by Lapid-Minguez.

MondayJun 04, 201814:30
Foundations of Computer Science SeminarRoom 155
Speaker:Or SattathTitle:Quantum Tokens for Digital SignaturesAbstract:opens in new windowin html    pdfopens in new window

The fisherman caught a quantum fish. "Fisherman, please let me go", begged the fish, "and I will grant you three wishes". The fisherman agreed. The fish gave the fisherman a quantum computer, three quantum signing tokens and his classical public key. The fish explained: "to sign your three wishes, use the tokenized signature scheme on this quantum computer, then show your valid signature to the king, who owes me a favor".
The fisherman used one of the signing tokens to sign the document "give me a castle!" and rushed to the palace. The king executed the classical verification algorithm using the fish's public key, and since it was valid, the king complied.
The fisherman's wife wanted to sign ten wishes using their two remaining signing tokens. The fisherman did not want to cheat, and secretly sailed to meet the fish. "Fish, my wife wants to sign ten more wishes". But the fish was not worried: "I have learned quantum cryptography following the previous story (The Fisherman and His Wife by the brothers Grimm). The quantum tokens are consumed during the signing. Your polynomial wife cannot even sign four wishes using the three signing tokens I gave you".
"How does it work?" wondered the fisherman. "Have you heard of quantum money? These are quantum states which can be easily verified but are hard to copy. This tokenized quantum signature scheme extends Aaronson and Christiano's quantum money scheme, and a variant by Zhandry, which is why the signing tokens cannot be copied".
"Does your scheme have additional fancy properties?" the fisherman asked. "Yes, the scheme has other security guarantees: revocability, testability and everlasting security. Furthermore, if you're at sea and your quantum phone has only classical reception, you can use this scheme to transfer the value of the quantum money to shore", said the fish, and swam away.

Joint work with Shalev Ben-David.

ThursdayJun 07, 201812:15
Vision and Robotics SeminarRoom 1
Speaker:Mark Sheinin Title:TBAAbstract:opens in new windowin html    pdfopens in new window
TuesdayJun 19, 201811:15
Mathematical Analysis and Applications SeminarRoom 1
Speaker:Nadav DymTitle:Linear algorithms for computing conformal mappingsAbstract:opens in new windowin html    pdfopens in new window

(joint with Noam Aigerman, Raz Sluzky and Yaron Lipman)
Computing homeomorphisms between surfaces is an important task in shape analysis fields such as computer graphics, medical imaging and  morphology. A fundamental tool for these tasks is solving Dirichlet's problem on an arbitrary Jordan domain with disc topology, where the boundary of the domain is mapped homeomorphically to the boundary of a specific target domain: A convex polygon. By the Rado-Kneser-Choquet Theorem such harmonic mappings are homeomorphisms onto the convex polygon. Standard finite element approximations of harmonic mappings lead to  discrete harmonic mappings, which have been proven to be homeomorphisms as well. Computing the discrete harmonic mappings is very efficient and reliable as the mappings are obtained as the solution of a sparse linear system of equations.

In this talk we show that the methodology above, can be used to compute *conformal* homeomorphisms, for domains with either disc or sphere topology:

By solving Dirichlet's problem with correct boundary conditions, we can compute conformal homeomorphisms from arbitrary Jordan domains to a specific canonical domain- a triangle. The discrete conformal mappings we compute are homeomorphisms, and approximate the conformal homeomorphism uniformly and in H^1. Similar methodology can also be used to conformally map a sphere type surface to a planar Jordan domain, whose edges are identified so that the planar domain has the topology of a sphere.