## Select Seminar Series

All seminars- Home
- ›
- Studying at the Faculty
- ›
- Seminars ›
- Algebraic Geometry and Representation Theory Seminar

# Algebraic Geometry and Representation Theory Seminar

We will introduce the (new) notion of approximability in triangulated categories and show its power.

The brief summary is that the derived category of quasicoherent sheaves on a separated, quasicompact scheme is an approximable triangulated category.

As relatively easy corollaries one can: (1) prove an old conjecture of Bondal and Van den Bergh, about strong generation in D^{perf}(X), (2) generalize an old theorem of of Rouquier about strong generation in D^b_{coh}(X). Rouquier proved the result only in equal characteristic, we can extend to mixed characteristic, and (3) generalize a representability theorem of Bondal and Van den Bergh,from proper schemes of finite type over fields to proper schemes of finite type over any noetherian rings.

After stating these results and explaining what they mean, we will (time permitting) also mention structural theorems. It turns out that approximable triangulated categories have a fair bit of intrinsic, internal structure that comes for free.