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Abstract 

We present a novel quantitative approach for studying creative 

leaps. Participants explored the space of shapes composed of ten 

adjacent squares, searching for ‘interesting and beautiful’ shapes. 

By recording players’ actions we were able to quantitatively 

study aspects of their exploration process. In particular our goal is 

to identify populated sub-regions in the shape space and study the 

dynamics of ‘creative leaps’: a jump from one such area to anoth-

er. We present here the experimental system, our methods of 

analysis and some preliminary results. We show that the network 

of shapes created by human participants is different from the class 

of networks created by applying a simple random-walk algorithm. 

Chosen shapes show an interesting negative correlation between 

their abundance and the probability to be chosen as beautiful. We 

further analyzed the human network unique signature using its 

network motifs profile.  Intriguingly, this signature shows similar-

ity to words-adjacency networks extracted from texts. Lastly, we 

find preliminary evidence that human players exhibit two types of 

exploration: ‘scavenging’, where shapes similar in their visual-

iconic meaning are quickly accumulated, and ‘creative leaps’, 

where players shift to a new region in the shape space after a 

prolonged search. We plan to build upon this result to quantita-

tively study creative processes in general and creative leaps in 

particular. 

 

 Introduction 

In his book “the Act of Creation” the author Arthur Koes-
tler describes the similarities between three types of crea-
tive acts: the pun of the joker, the discovery of the scientist 
and the lyric expression of the poet (Koestler 1964). The 
crux of the creative act is the creative leap, the momentary 
intersection of two different matrices of association (Fig. 1, 
left). Consider a search resulting in a creative solution for a 
given problem. Before the creative leap the search is con-
fined to some familiar sub-space (the horizontal plane in 
Fig. 1, left). Using chance or intuition the solver has man-
aged somehow to reach a point on the plane which also 
belongs to another plane, a totally different class of solu-
tions (the vertical plane in Fig. 1, left). The creative leap is 
the ability to recognize this transition point and to jump 
from one class of solutions to another.  

Figure 1. A Symbolic representation of creative leaps. Left: ac-

cording to Koestler the heart of any creative act is a creative leap 

between two intersecting domains. Right: a hypothetical creative 

space. Solutions are grouped into two clusters. Searching within a 

cluster requires short moves and creates similar solutions. In or-

der to move to a different cluster of solutions the agent needs to 

perform a creative leap. 
 
 Little is known about the dynamics of creative leaps. 
Previous work has described creative leaps of exceptional 
creators (Miller 1996) while empirical work has focused 
mainly on moments of insight in problem solving, such as 
the Remote Association Test, using both behavioral (Dom-
inowski and Dallob 1995) and brain studies (Sandkühler 
2008). It is difficult to capture creative leaps in a laborato-
ry setting. Moreover, many solution spaces might be high-
dimensional and complex, with no clear metric defining 
the similarity between points. For example, consider the 
space of all answers to the following question used in a 
group creativity test: “how can the number of tourists visit-
ing your city be increased” (Nijstad and Stroebe 2006).  
While this problem has solutions that belong to different 
classes (for example ‘increase advertisement’ vs. ‘improve 
infrastructure’) it is not clear how to define and construct 
the space of all such ideas.  
 Our goal is to study a creative task with an underlying 
solution space that is (a) simple and well defined to enable 
a quantitative investigation of the search dynamic (b) that 
contains clusters of solutions, with the possibility of per-
forming creative leaps between them (see Fig. 1, right). 
Our approach resembles recent work by Jennings that simi-
larly studied people’s search trajectories in a visual domain 
(Jennings 2010; Jennings et al. 2011). 
 We searched for a parameterized space that will be com-
plex enough to allow for possible creative leaps, but not 
too complex to allow a computational description of hu-
man search in this space. We suggest using the set of all N-
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size polyominoes – the set of two dimensional shapes com-
posed of N adjacent squares (Golomb 1994).  

Besides its well defined structure which allows for es-
tablishing a metric on the search space, the polyominoes 
space provides a crucial advantage: the shape space explo-
ration complexity is tunable by changing the parameter N. 
We can thus aim to have an exploration process which is 
on one hand not too trivial and on the other hand not too 
complex to quantify. In that we hope to capture the gist of 
what Boden describes as ‘an exploratory frame of mind’ 
(Boden, 2004). Since this exploration process resembles a 
creative process undertaken by, say, a graphic designer 
designing a new icon in a limited space, we hope to gain 
insights in the growing field of computational models for 
design processes (Gero, 2000). 
 We analyzed the network of shapes and moves created 
by human participants and compared the human explora-
tion with a simple random-walk algorithm that transverses 
the network of shapes discovered by the human partici-
pants. This comparison shows that the human search be-
havior is not simply the results of a random travel between 
the shapes. Our results suggest that humans perform two 
types of searches: ‘scavenging’, a simple search in an area 
of shapes, which can be explained by an algorithmic 
search, and ‘insight’ moves, or leaps, that cannot be ex-
plained by simple algorithm. The first type of moves corre-
sponds to the within cluster exploration in Fig. 1, while the 
second type contains, we hope, the creative leaps.  
 We next describe our experimental setup, the methods of 
analysis we employed and some initial findings supporting 
the notion that creative leaps can be quantitatively studied 
using the suggested approach.  

Experimental Setup 

System 

We developed a system to experimentally test human tra-
jectories in the shape space of polyominoes. We are cur-
rently experimenting with decominoes, 10-size poly-
ominoes (consisting of 4655 unique shapes and 36,446 
shapes if rotations and mirror images are counted).  
 We tested several variants of the creative task and report 
here results from the ‘journey in shape space’: exploring 
the space by moving one square at a time, transforming 
one legitimate shape to another. The starting point shape is 
always the horizontal line. We ask people to “explore the 
space of ‘shifting shapes’ and to discover shapes that you 
find interesting and beautiful”.  
 We developed an experimental setup using Processing, 
an open source, cross-platform, programming language 
used for visualization (see Fig. 2). 

Figure 2. Exploring the space of shapes. Left: a screen shot of the 

‘Shape Shifter’ game. At each step players move one square to 

create a new polyomino.  Shapes can be stored in the ‘shape gal-

lery’ by pressing the gray rectangle at the top-right corner. Right: 

examples of different shapes created by human players. 

Procedure 

123 participants (58 females and 65 males, ages 12-75 

years, mean = 34.3), recruited through emails and social 

networks, were invited to participate in a short experiment 

in creativity. At any point players could store the current 

shape to a ‘shape gallery’. The players moved freely be-

tween shapes, within a time limit of 25 minutes (no partic-

ipant reached this limit). When choosing to finish the ex-

ploration they continued to the ‘rating stage’. In this last 

stage players observed the ‘shapes gallery’ and were asked 

to choose ‘the five most creative shapes you discovered’.  
We recorded square moves between shapes and their tim-

ing, as well as each player chosen gallery shapes and the 

final five shapes.  

Analysis 

A random-walk algorithm over the entire shape net-
work 
We used a network representation (a graph) of the shape 
space in the following way. Each shape is a node in the 
graph. Shape A and B are connected by an edge if shape A 
can be reached from shape B by moving a single square in 
a valid way. This structure is a directed graph representing 
all possible valid moves  
 The algorithm explores the network by first randomly 
removing one square from the current shape. The next de-
comino in the path is then generated by placing the 10th 
square in a new random location (self-loops are not ex-
cluded). This extends the path by one step. The path is fur-
ther extended by repeating these steps up to a pre-
determined steps number.  
 This algorithm was used to establish both the entire 
shape space network and a random walk generated network 
to compare with the human generated network of travelled 
shapes.  For the entire shape space the algorithm was run 
until all possible 36,446 decominoes were generated (with 
mean path length of 150,000 steps). For comparison with 
the human network, the algorithm was run 123 times (the 
number of human participants) with a number of steps 
which is sampled from the number of steps distribution of 
the human players. 
  



 

 

A random-walk algorithm over the human generated 
network  
In order to create computer generated networks which are 
more closely related to the human networks we restricted 
the algorithm to travel only on edges which were travelled 
by at least one human player.  
 First the human generated decominoes network is gener-
ated and the allowed steps are listed. Although the network 
is naturally directed, the computerized walker is allowed to 
move on the undirected network (that is, the computer can 
also move backward on any human edge).  
 The algorithm is seeded and a new shape is chosen ran-
domly from the set of shapes which are connected by al-
lowed edges. The length of the path is sampled from the 
distribution of lengths of paths traversed by the human 
players. This process is repeated 123 times.  

 
Figure 3. Comparing human and computational exploration net-

works. The number of occurrences of edges where edges are 

grouped by the number of times they were traversed. Shown are 

the values for human players’ network (red) and the random walk 

network restricted to the human network shapes (mean of 10 sim-

ulation in dark blue, each specific simulation in light blue).  

 
Our current goal is to compare the features of the human 
generated network to a network generated by a random-
walk algorithm and to study if there is a noticeable differ-
ence between the two, in order to show that the human 
behavior cannot be explained as a result of a  random-walk 
in the shape-space.  
 
Triad Significance Profile Calculation 
The 13 network motif frequencies of the human and ran-
dom generated networks were calculated. The normalized 
Z score of each of the 13 possible triads was then calculat-
ed. Z score is computed by the difference of the triad fre-
quency to the mean frequency of the same triad in a com-
puterized agents' network, measured in STD units. Fre-
quency mean and STD were calculated from 10 simula-
tions of the computational networks. 

Results 

Human and Computational Networks 

We first asked whether the exploration network created by 
human players is different from the network created by a 

random-walk algorithm traveling the entire shape net-
works. We find that the exploration network created by 
human players is much more compact. Furthermore, the 
players’ network obeys a power-law distribution of node 
degree frequencies (how many edges go in or out from a 
specific node), while the computational algorithm produces 
a Gaussian-like distribution of node degree frequencies. In 
addition, human exploration on the network of all allowed 
edges is very constrained and compact relative to a random 
exploration process of the whole shapes space.  
 We next asked whether the type of exploration players 
perform is dictated only by some constraint on shapes 
available to people’s perception. We thus compared the 
human exploration network with an ensemble of networks 
created by allowing a random-walk algorithm to choose 
shapes randomly, but restricting it to shapes that were se-
lected by the human players. We find that the algorithm 
travels much less than the human players and so create a 
much smaller network than the players’ network. Further-
more, the properties of the computational exploration net-
works, such as the distribution of nodes degrees is marked-
ly different from the human exploration network (Fig. 3). 

 Consensus in Participants’ Choices  

A possible concern regarding our creative task is whether 
there is some consensus among different participants re-
garding their aesthetic choices. While we do not expect to 
have total agreement – for example some players preferred 
iconic shapes, while other preferred more abstract ones, a 
total lack of consensus could raise doubts on the validity of 
this task to measure human creativity.  
 To assess the consensus in participants’ choices we plot-
ted the selection ratio, the percentage of times a shape was 
chosen (number of times chosen divided by number of 
times traversed) against the number of times a shape was 
traversed (Fig. 4). We differentiated between shapes 
ranked as interesting shapes in the last stage of the game 
(in blue) and those that were only chosen to the gallery (in 
red). 
 We note that there is a large number of shapes with high 
(>50%) selection ratio, with few shapes exhibiting selec-
tion ratio of more than 90%. At least for these shapes there 
seems to be a consensus among the different human partic-
ipants. In addition, shapes that were ranked in the last stage 
had a statistically significant higher selection ratio (ranked: 
centered around (23.34, 50) with STD (19.41, 20); not-
ranked: centered around (15.6, 20) with STD (6.7, 13); 
non-paired t-test, p<10

-7
). 

 We also note the negative correlation (Pearson correla-
tion = -0.25, p<0.05) between the prevalence of a shape 
(how many times it was traversed) and its selection ratio. 
Intriguingly, this might suggest that shapes ‘less traveled 
by’ are appreciated more by the people who have reached 
them.  

A Network Motifs Signature 

In order to further characterize the human exploration net-
work we measured its network motifs signature, termed 



 

 

triad significance profile (TSP). This network signature is 
calculated by taking the frequencies of all three node sub-
groups of a network and normalizing each frequency by 
the triad frequency in a network created by a similar ran-
dom process (Milo 2002). In our case, we compared triad 
frequencies of human network with triad frequencies creat-
ed by the random walk algorithm on the human network 
(see Analysis). Previous studies in our lab showed that 
networks with similar structure and function have a similar 
TSP signature. Thus, this method offers another quantita-
tive classification to networks. 
  This preliminary calculation (Fig. 5) indicates that the 
network motifs significance profile shares a similar fre-
quency signature of  text networks (Milo 2004), suggesting 
that the human visual exploration process in shape space 
consists of visual rules similar to those of language net-
works, having categories of words with a certain formulat-
ed way of combining between different categories. Future 
work should check the dependency of the calculated triad 
significance profile on the randomization process used to 
create the base-line random network.  

Figure 4. Consensus in participants’ choice of shapes. Y-axis: the 

number of times a shape was admitted into the gallery out of the 

number of times it was visited. X-axis: the number of times a 

shape was visited. Only shapes that were visited at least 10 times 

are presented.  Dots in blue represent shapes that were also 

ranked in the final stage while red dots represent shapes that were 

chosen to the gallery but were not ranked. Correspondingly, 

shapes shaded in blue are representative of the set of finally cho-

sen shapes. 

Initial Evidence for Creative Leaps 

In order to more closely examine the exploration process 
of individual players, we focused on the ‘chosen to the 
gallery’ shapes (Fig. 6), enumerating both the number of 
steps between two sequential shapes (the number above 
each shape) and the time interval between selections of the 
two shapes (the y axis). For several players we observe an 
interesting pattern: the time and number of steps between 
two sequential chosen shapes is declining at the beginning, 
usually creating similar content shapes.  Then, a long tra-
versal exploration process is commenced, usually leading 
to shapes belonging to a new cluster of similar shapes. As 

exemplified in Fig. 6, the player moves from “Animals” 
shapes to “Space invaders” shape to “Symbolic 
male/female” shapes. One can interpret this saw-tooth pat-
tern as consisting of scavenger explorations connected by a 
creative leap, which serves to reach a new iconographic 
domain.  

We hope to utilize these processes to cluster the shapes 
automatically into different domains and thus create a 
semi-metric on the shape space. Another utility to aid 
building the metric comes from the use of the rating pro-
cess at the end of the game. Subjects are requested to 
choose the five most creative shapes. Our assumption is 
that subjects will choose shapes that they see as most dis-
tinct from one another, thus providing another metric 
measure on the shape space. 

Figure 5. The triad significance profile (TSP) of the human play-

ers’ network suggests a similarity to word-adjacency networks of 

texts. The main feature of the TSP is the under-representation of 

triangle-shaped triads 7 to 13.  

Conclusions and Future Work 

We presented a novel quantitative approach for studying 
creative leaps. Our goal is to study a creative task using 
computational tools. Specifically we aim to define the 
space of products of the creative task, to detect clusters of 
similar products and to study creative leaps between them. 
 Working toward this goal we developed a web-based 
game in which players explored a visual space composed 
of 10-size polyominoes, while searching for interesting and 
beautiful shapes. As a first step we tested whether human 
behavior in this task can be explained as a result of a ran-
dom-walk algorithm. We therefore compared the explora-
tion network created by human players to two computa-
tional exploration networks. The first network was created 
by random walks on all possible shapes, and the second 
one was created by random walks restricted to shapes cho-
sen by human players. We compared general properties of 
these networks, such as in/out degree, and found a signifi-
cant difference between the human and the computational 
networks. Compared to a network made by a random walk 
on shapes chosen by players, the computer’s random walk 
is much smaller, suggesting that the trajectories of human 
exploration contain also segments of directed motion to-
ward interesting regions of the space. Following the foggi-
ness metaphor of Jennings (2011) these segments might 
correspond to the areas of the landscape with have ‘good 
visibility’. 
 We also used the concept of network motifs to charac-
terize the human search network. We identified which of a 
known super-families of networks (e.g. social, transcrip-



 

 

tion networks, and language originated), matches the hu-
man exploration network. We find that the human network 
is similar to language-originated network, and are planning 
to further study the connection between these two net-
works.  
 We further find preliminary evidence of players’ para-
digm shift while playing the game. Players show periods of 
‘scavenging’, where they exploit shapes similar in iconic 
meaning (e.g. animals, letter, symmetric shapes) accompa-
nied by long walks on the grid of possible shapes, which 
leads to a different region in the shapes space. The ‘saw-
tooth’ pattern we have found in the time between chosen 
shapes (Fig. 6) might be the first clue for the existence of 
clusters in our shape space. We plan to corroborate these 
finding by different methods that can be used to detect 
clusters of shapes in this visual domain. In particular, we 
plan to use the human choices embedded in our task at 
multiple levels (which shape to move to; which shapes to 
insert to the gallery; which shapes to choose in the final 
stage) as a different probe into the structure of the shape 
space.  
 This paper presents work-in-progress aiming to develop 
a computational platform for studying human search in 
creative tasks, and in particular to study creative leaps. We 
are currently performing a large-scale human experiment 
with this platform and plan to apply a host of quantitative 
methods to further test the preliminary results presented 
here. Using these methods we hope to be able to measure 
and study the dynamics of creative leaps.  
 

Fig 6. Preliminary evidence for clusters in the shape space. Look-

ing at the time differences between chose shapes we often see 

‘saw-tooth’ patterns. Humans seem to reach a fruitful region, 

‘scavenge’ it, that is, to quickly pick a few similar shapes, and 

then to move to another region, a move that takes much more 

time. Notice for example the two clusters of similar shapes 

around 100 and 180 seconds. Only chosen shapes are shown, and 

shapes in the ‘top five’ (chosen between all gallery shapes) ap-

pear with a blue background. The number above each shape is the 

number of moves from the previous shape. 
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