
Introduction to Biological Physics

Uri Alon

Exercise 1.

- 1. A change in production rate. A gene Y with simple regulation is produced at a constant rate β₁. The production rate suddenly shifts to a different rate β_2 .
 - a. Calculate and plot the gene product concentration Y(t).
 - b. What is the response time (time to reach halfway between the steady states)?
- 2. Cascades. Consider a cascade of three activators, $X \to Y \to Z$. Protein X is initially present in the cell in its inactive from. The input signal of X, S_x ,

appears at time t = 0. As a result, X rapidly becomes active and binds the promoter of gene Y, so that protein Y starts to be produced at rate β . When Y levels exceed a threshold K_V, gene Z begins to be transcribed. All proteins have the same degradation/dilution rate α . What is the concentration of protein Z as a function of time? What is its response time with respect to the time of addition of Sx? What about a cascade of three repressors? Compare your solution to the experiments shown in the figure.

1 Rosenfeld and Alon, J. Mol. Biol. (2003) 329, 645–654

- 3. Fan-out. Transcription factor X regulates two genes, Y1 and Y2. Draw the resulting network, termed a fan-out with two target genes. The activation thresholds for these genes are K₁ and K₂. The activator X begins to be produced at time t = 0 at rate β . Its signal is degraded/diluted at rate α , and its signal S_x is present throughout. What are the times at which the gene products, the stable proteins Y₁ and Y₂, reach halfway to their maximal expression? Design a fan-out with three genes in which the genes are activated with equal temporal spacing, that is where they activated at times t₁, t₂, and t₃ such that t₃ $t_2=t_2-t_1$.
- 4. Positive feedback. What is the effect of positive autoregulation on the response time? Use as a model the following linear equation:

$$dX/dt = \beta + \beta_1 X - \alpha X$$

Explain each term and solve for the response time. When might such a design be biologically useful? What happens when $\beta_1 > \alpha$?