Physics of Behavior Uri Alon Exercise 6

1. Repressilator: Three repressors regulate each other in a cycle: X represses Y, Y represses Z and Z represses X. Z also represses a green-fluorescent protein (GFP) gene which is a readout of the circuit.

a. Sketch the circuit diagram.

b. Sketch the oscillatory dynamics of X,Y and Z as a function of time.

c. An experiment by Elowitz (2000) built this circuit in *E coli*. In a test-tube, the bacterial culture showed a constant green fluorescence when measured in a fluorimeter. But when looking at individual cells in the microscope, each cell was seen to have production of green fluorescence that oscillated with a period of about 8h. Explain.

d. 8h is longer than the cell generation time of 2h. How could the individual cells show oscillations? Sketch a cell "family tree" to illustrate.

2. **Cell-cycle oscillator**. The frog (*Xenopus*) embryonic cell-cycle is driven by a protein circuit that acts like an autonomous oscillator. It can be described by the following two-ODE model.

$$\frac{dx}{dt} = \alpha_1 - \beta_1 x \frac{y^{n_1}}{k_1^{n_1} + y^{n_1}} + \alpha_3 (1 - x) \frac{x^{n_2}}{k_3^{n_2} + x^{n_2}}$$
$$\frac{dy}{dt} = \alpha_2 (1 - y) \frac{x^{n_3}}{k_2^{n_3} + x^{n_3}} - \beta_2 y$$

Here x is the fraction of active CDK1 and y is the fraction of active APC^* .

a. Explain the meaning of each of the parameters in the equations.

b. Simulate the dynamics using a computer. Search for oscillations as a function of the parameter α_1 (throughout this exercise use: $\alpha_2 = \alpha_3 = \beta_1 = 3$, $\beta_2 = 1$, $k_1 = k_2 = k_3 = 0.5$, $n_1 = n_2 = n_3 = 8$). Plot x(t) for a value α_1 which admits a stable steady state and for a value of α_1 which admits stable oscillations.

c. Plot {x(t), y(t)} on the phase plane (plot y(t) versus x(t)) for both values of the parameter α_1 starting at the initial condition x=y=0.5.

d. What effect does changing α_1 has on the behavior of the oscillations (look at amplitude and frequency)? Plot the amplitude and frequency as a function of α_1 , using numerical simulations at several values of α_1 .

3. **Optimality with limiting substrate.** Protein X is an enzyme that acts on a substrate to provide fitness to the organism. The substrate concentration is L.

a. Calculate the fitness function f(X, L) assuming linear cost, $c \sim -\eta X$, and a benefit that is a Michaelis–Menten term, $b(L, X) = b_0 L \frac{X}{X+K}$, appropriate for cases where the substrate, rather than the enzyme X, is limiting.

b. Plot the fitness function for various values of L.

c. Calculate the optimal enzyme level X_{opt} as a function of L and K.

d. What is the minimal substrate level L_c required for maintenance of the gene for X by the organism? When is the gene lost? Explain.

4. **Optimal expression of a subunit.** Multiple units of protein X act together in a multi-unit complex. The benefit is a Hill function, $b(X) = b_0 \frac{X^n}{K^n + X^n}$, and the cost function is linear in *X*. What is the optimal protein level? Explain.

5. **Global warming.** An organism with a generation time of *T* years has a fitness that depends on a trait *X*. The fitness function F(X) is shaped like a mountain with a maximum, $F(X) = F_0 - F_1(X - X_{opt})^2$. When temperature rises, the position of the fitness maximum shifts. The position of the maximum X_{opt} rises by q% per degree of warming. Natural selection is able to change *X*, but not faster than a maximal rate of s% per generation. a. Sketch the fitness landscape at two different times.

b. Discuss how the fitness of the species will change with time, assuming that temperature was constant for a long time, and then begins to rise at a rate of d% per year.

c. What effect does the generation time *T* have? Are organisms with long generation times more or less vulnerable to the rise in temperature?