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Cell-contact-dependent signalling in axon growth and guidance: 
Eph receptor tyrosine kinases and receptor protein tyrosine 
phosphatase 13 
Sacha J Holland*, Elior Pelesl, Tony Pawson  and 
Joseph Schlessinger§ 

The growth and guidance of axons involves the recognition 
of complex environmental cues by receptor proteins on 
the surface of the growth cone and their interpretation by 
cellular machinery, leading to changes in cellular behaviour. 
Recent advances have demonstrated that the ligands for 
Eph receptor tyrosine kinases, the ephrins, act as repulsive 
axon guidance cues, and that Eph receptors are required 
for correct axonal navigation in vivo. Members of the 
receptor protein tyrosine phosphatase (RPTP) family also 
play important roles in axon guidance and growth. RPTPJ3 
and Eph receptors interact with cell-surface-bound ligands, 
and there is increasing evidence that both transmembrane 
ephrins and contactin, a ligand for RPTP~, may possess an 
intrinsic signalling function. Thus, the cell-contact-dependent 
interactions between these receptors and ligands may lead 
to initiation of bidirectional signals that regulate axonal growth 
and migration. 

Addresses 
*tProgramme in Molecular Biology and Cancer, Samuel Lunenfeld 
Research Institute, Mount Sinai Hospital, 600 University Avenue, 
Toronto, Ontario, M5G lX5, Canada 
*e-mail: holland@mshri.on.ca 
Se-mail: pawson@mshri.on.ca 
tDepartment of Molecular Cell Biology, Weizmann Institute of 
Science, Rehovet, Israel 
§Department of Pharmacology, New York University Medical Center, 
550 First Avenue, New York, New York 10016, USA 

Current Opinion in Neurobiology 1998, 8:117-127 

http://biomednet.com/elecref/O959438800800117 

© Current Biology Ltd ISSN og5g-4388 

Abbreviations 
CAH 
Dig 
EGFR 
GPI 
LMW-PTP 
Ng-CAM 
Nr-CAM 
PAK 
PDZ 
PI 3'-kinase 
PSD-95 
RasGAP 
RPTP 
RTK 
SAM 
SH 
SLAP 
WASP 
ZO1 

carbonic anhydrase 
Discs large 
epidermal growth factor receptor 
glycosylphosphatidylinositol 
low molecular weight protein tyrosine phosphatase 
neuronal-glial cell adhesion molecule 
Ng-CAM-related cell adhesion molecule 
p21-activated kinase 
PSD-g5, Dig and ZO1 
phosphatidylinositol 3'-kinase 
postsynaptic density of g5 kDa 
Ras GTPase-activating protein 
receptor protein tyrosine phosphatase 
receptor tyrosine kinase 
sterile alpha motif 
Src homology 
Src-like adapter protein 
Wiskott-Aldrich syndrome protein 
zona occludens 1 

Introduction 
This review will cover the structure of Eph receptors and 
ephrin proteins, receptor protein tyrosine phosphatase 13 
and its ligand contactin, and describe recent insights into 
their biological functions in axon growth and guidance. 
We will focus on the identification of possible signalling 
partners for these proteins and discuss evidence for 
bidirectional cellular signalling in both systems. 

Introduction to Eph receptors 
The Eph family of receptor tyrosine kinases (RTKs) 
includes 14 vertebrate members, which have recently 
been classified into two groups ('A' and 'B') on the 
basis of the homology of their extracellular domains 
[1°,2]. Ligands for these receptors (termed ephrins for 
Eph receptor interacting proteins [1°]) are themselves 
membrane-attached proteins. They  fall into two classes 
(again, 'A' and 'B' in the new nomenclature), relating 
to sequence conservation and method of membrane 
attachment. 'A' class ephrins are attached to the mem- 
brane via a glycosylphosphatidylinositol (GPI) linkage, 
whereas those of the 'B' class contain transmembrane 
and cytoplasmic regions (Figure 1) (see [2]). These 
groupings also roughly correspond to binding specificities 
of ligands for the receptors (i.e. A class ephrins bind to 
A class receptors, and B class ligands bind to the B class 
receptors); although, within groups, binding interactions 
are relatively promiscuous and some interactions cross 
over group boundaries [3,4°°]. Expression of Eph family 
members in the developing embryo is dynamic and is 
particularly marked in neural structures (see [5] and 
references therein). Corresponding receptor and ligand 
classes are often detected in reciprocal and apparently 
mutually exclusive distributions, suggesting that they may 
divide the embryo into discrete functional domains [4°°]. 
Receptor-ligand interactions are expected to occur via 
cell-cell contact, potentially at boundaries at which do- 
mains of receptor- and ligand-expressing cells meet [4°',6]. 

Eph receptor protein structure 
The extracellular portion of Eph receptors consists of 
an amino-terminal domain proposed to have a globular 
structure followed by a region bearing characteristically 
spaced cysteine residues and two fibronectin type III 
domains (Figure 1). Labrador et al. [7] have recently 
demonstrated that the globular domain of EphB2 (for- 
merly known as Nuk) is sufficient to confer ephrin-B1 
(formerly known as Elk-L) binding properties upon an 
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Figure 1 
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Structure of Eph receptors and ephrins. (a) 'A' and 'B' class receptors have similar structures. The extracellular domain contains globular, 
cysteine-rich and fibronectin type III domains. Inside the membrane, the highly conserved juxtamembrane motif contains two tyrosine residues, 
which are the major autophosphorylation sites (single-letter amino acid code used). The carboxy-terminal tail contains one conserved tyrosine 
residue embedded in a SAM motif. Receptors terminate in a hydrophobic residue, usually valine. (b) Ligand classes have similar extracellular 
domains. The 'A' class ephrins are attached to the membrane via a GPI linkage, whereas the 'B' class ephrins possess a cytoplasmic domain 
containing five conserved tyrosine residues, as indicated. 

orphan Eph receptor, and that this region appears to be 
the principal ligand-binding domain in both A and B class 
receptors. 

A conserved feature of Eph receptors is a -10 amino 
acid motif in the intracellular juxtamembrane region 
that contains two tyrosine residues (Figure 1). In vitro, 
these tyrosines, especially the second of the pair (Tyr602 
in EphA4/Sek), are major substrates for the receptor 
autokinase activity [8"]. Mutation of both these residues 
in EphB2 (Tyr604 and Tyr610) reduces ligand-induced 
tyrosine phosphorylation to almost undetectable levels 
[9°]. However, additional tyrosine residues presumably 
become phosphorylated as SH2-domain-mediated inter- 
actions that do not depend on the integrity of the 
juxtamembrane region have been demonstrated (Figure 2; 
Table 1) [10,11]. 

A conserved sterile alpha motif (SAM) domain has recently 
been identified in the carboxy-terminal tail of Eph 
receptors [12]. SAM domains were first identified in yeast 
sexual differentiation proteins, and homology searches 
have demonstrated their occurrence in a wide variety of 
proteins, although few functional data are available. A 

conserved tyrosine residue in the EphB1/Elk SAM domain 
(Tyr929) appears to mediate the interaction of EphB1 
with the SH2-domain-containing protein Grbl0 [11] and 
the low molecular weight protein tyrosine phosphatase 
(LMW-PTP) (E Stein et aL, personal communication; see 
Note added in proof). Whether the SAM domain has 
additional functions remains to be determined. 

E p h r i n s  
Eph receptor activation can be initiated by contact with 
ephrin-expressing cells, and, in most cases, attachment of 
the ligand to the cell surface is crucial for receptor stim- 
ulation; soluble ephrin extracellular domains are poorly 
able to initiate autophosphorylation unless artificially 
aggregated [6]. Receptors may, therefore, require a high 
local concentration or clustering of ligands at the cell 
surface for full activation, although binding affinities 
measured using soluble receptor ectodomains fall in the 
nanomolar range (see [13]). 

A striking feature of the transmembrane ephrins is 
the degree of conservation of their carboxy-terminal 
tails [14°°]. The  last 33 amino acids of ephrin-B1 and 
ephrin-B2 are identical, and include five potential tyrosine 
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Figure 2 
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Schematic of the protein-protein interactions of a generic Eph receptor. Src family kinases, RasGAP and Nck interact with juxtamembrane 
tyrosine residues (single-letter amino acid code used). Grbl 0 and the LMW-PTP engage via the carboxy-terminal conserved tyrosine. 
PI 3'-kinase and Grb2 have been suggested to bind within the kinase domain. The carboxy-terminal valine residue may be a docking site for 
PDZ-domain-containing proteins. Downstream intracellular signalling pathways and interaction with membrane-bound ligand are also indicated. 
These interactions represent the sum of all those shown for both A and B class Eph receptors. 

phosphor3'lation sites (Figure 1). This observation led 
to the investigation of a possible signalling role of 
transmembrane ephrins in the ligand-presenting cell. 

Biological functions of Eph receptors and 
ephrins 
The first functional evidence of a role for Eph receptors 
in axon guidance came from the purification and cloning 
of ephrin-A5 (formerly known as AL-I/RAGS) as a tectal 
protein with the ability to collapse retinal axon growth 
cones [15]. Multiple lines of evidence now argue for an 
important in vivo function for Eph receptors and ephrins in 
directing axonal [16,17°',18",19",20°°,21°] and neural crest 
cell [18°,2Z",23 "] migrations, regulating axonal bundling 
(fasciculation) [21°,24], and preventing the mixing of 

discrete cell populations during development ([22°°]; see 
also, in this issue, Holt and Harris, pp 98-105, and Cook, 
Tannahill and Keynes, pp 64-72). In vitro assays have 
demonstrated that ligand activation of Eph receptors in 
neuronal cells initiates anti-adhesive responses, charac- 
terised by repulsion of axons [15,18 °] and neural crest 
cells [18",23°], and collapse of neuronal growth cones 
[15,25°,26°]. Consistent with these observations, patches 
of ephrin-A2 ectopically expressed in the embryonic chick 
tectum are avoided by retinal axons, which terminate at 
abnormally anterior locations [17"]. 

Regulation of axonal bundling may be an example of 
repulsion of axons from an ephrin-expressing environment 
or may reflect modification of cell surface adhesion 
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Table 1 

Cytoplasmic signalling proteins that interact with Eph receptors. 

Residue/ 
Protein Receptor region Domain Possible function/comment Reference 

PI 3'-kinase EphA2 ND Carboxy-terminal SH2 Modest increase in cellular [10] 
p85 subunit domain PI 3'-kinase activity upon 

ephrin-A1 stimulation 
Role in membrane ruffling 

Fyn EphA4 Tyr602 SH2 domain Highly expressed in nervous system [8"] 

SLAP EphA2 ND ND .'?Competition for Src family [40] 
kinase binding 

Grb2 EphB1 Kinase domain.'? SH2 domain Regulator of Ras/MAP kinase [11] 
pathway 

Grbl0 EphB1 Tyr929 SH2 domain Homology to C. elegans migl 0 [11] 
Regulation of cell migration.'? 

RasGAP EphB2 Tyr604/Tyr610 Amino- and carboxy-terminal Binds p190 RhoGAP and p62 dok [9 °] 
SH2 domains Regulation of Nck and cytoskeleton? 

Nck EphB1 Tyr594 SH2 domain Binds PAK, WASP [41] 
Mediates c-Jun kinase activation 
Mutations in Drosophila homologue 
result in axon pathfinding defects 

LMW-PTP EphB1 Tyr929 ND (.'?catalytic domain) Binding activated by soluble ligand (a) 
EphB2 tetramer 

aE Stein et aL, personal communication; see Note added in proof. ND, not determined. 

proteins as a consequence of Eph receptor signalling 
[24]. Indeed, the L1 neural cell adhesion molecule is a 
substrate for the EphB2 kinase domain [27]. Regulation of 
cell-cell junctional complexes involving C-cadherin may 
also result from Eph receptor activation. Injection of an 
epidermal growth factor receptor (EGFR)-EphA4 chimera 
into Xenopus blastulas caused a dramatic kinase-dependent 
loss of cell adhesion when the chimeric receptor was over- 
expressed or activated by co-injection of the EGFR ligand, 
tumour necrosis factor (~ (TNF(x), but this phenotype 
could be rescued by co-injection of C-cadherin [28]. 

It is important to note that in endothelial cells, different 
responses to Eph receptor activation are observed. Both 
transmembrane and GPI-linked ephrins can stimulate cell 
adhesion and vascular network formation ([29]; E Stein 
et al., personal communication; see Note added in proof). 
The  difference between these responses may depend on 
the cell type or alterations in ligand clustering. 

M u t a t i o n s  in m o u s e  Eph g e n e s  
Three Eph receptors, EphA8 (Eek) [19"], EphB2 [20 ̀ °] 
and EphB3 (Sek4) [21 °] have been inactivated by gene 
targeting in the mouse. Despite the widespread expression 
of Eph family members in the developing embryo, defects 
in the mutant animals are limited to one or two distinct 
structures (Table 2). Reassuringly, these include several 
axon tracts. Homozygous mutation of EphA8 and EphB2 
genes allows specific axons to project into areas avoided in 
wild-type animals, in accordance with a repulsive function 

for Eph receptors. Redundancy in signalling due to the 
large number of receptors with overlapping expression and 
ligand-binding specificity may explain the rather limited 
phenotypes of EphA8, EphB2 and EphB3 homozygous 
null mice. Indeed when EphB2 and EphB3 mutations 
were combined, the defects in the double homozygotes 
were more severe than in either single mutant [21°], and 
affected axonal pathfinding and fasciculation in the brain, 
as well as closure of the palate. 

Signa l l ing  p a t h w a y s  contro l l ing  axon 
g u i d a n c e  
In contrast to most growth factor RTKs, activation of 
Eph receptors does not cause marked mitogenesis [30]. 
Stimulation of rat cortical neurons with soluble ephrin-A5 
leads to growth cone collapse preceded by redistribution of 
F-actin from the distal to central part of the growth cone, 
and eventual net loss of F-actin [25°]. Interestingly, the 
morphological features of ephrin-B2-induced collapse in 
this system are slightly different, with no F-actin depletion 
but additional disruption of microtubule organisation 
[26°]. Possibly, therefore, GPI-linked and transmembrane 
ephrins exert collapsing effects by different mecha- 
nisms, which may be attributable to differing signalling 
capabilities of their cognate receptors. The  signalling 
pathways activated by Eph receptors probably culminate 
in the regulation of cytoskeletal architecture and cellular 
adhesive properties. Whilst total growth cone collapse 
probably results from destabilisation of actin structures 
and/or loss of adhesion from the substrate across the whole 
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growth cone, turning could be achieved by a local loss of 
actin polymerisation initiated, for example, when filopodia 
contact a ligand-expressing cell (see [31]). 

It is well documented that regulation of the cytoskeleton 
and adhesion can be controlled by small GTPases 
of the Rho/Rac/Cdc42 family [32]. In fibroblasts, ac- 
tivation of Rho family GTPases controls formation of 
actin structures: Cdc42-GTP induces filopodia or actin 
microspikes--structures found predominantly in motile 
cells and neuronal growth cones [33]; Rac-GTP in- 
duces web-like lamellipodia [34]; and Rho-GTP induces 
stress-fibre formation and substrate adhesion due to 
assembly of focal complexes [35]. Inactivation of Rho 
family members may therefore be required to allow 
disassembly of such structures. Rac-1 appears to mediate 
co]lapsin-induced growth cone collapse in chick dorsal 
root ganglion neurons [36], whereas Rho seems to be 
involved in lysophosphatidate-mediated neurite retraction 
in cultured neuroblastoma cells [37]. Mutations in Rho 
family members lead to defects in cell migration and 
axon outgrowth in vivo. Expression of dominant-negative 
or constitutively active Dracl in the Drosophila nervous 
system truncates axon growth [38], as do some mutant 
alleles of Caenorhabditis elegans mig-2 (a Rho family 
member) [39°°]. However, several mig-2 mutant alleles 
lead to misguided axon trajectories, suggesting that 
Rho can function to couple guidance cues to process 
outgrowth, at least in C. elegans [39"]. Investigation of Eph 
receptor signalling may help to link Rho/Rac/Cdc42 family 
GTPases to activation of axon guidance cue receptors. 

In t racel lu lar  ta rgets  of  Eph receptors  
A number of SH2-domain-containing signalling proteins 
able to interact with EphA2 and EphB1 have been 

Table 2 

identified using the yeast two-hybrid system (Table 1; 
Figure 2) [10,11,40,41]. Whilst several of these proteins 
have been shown to bind to ligand-activated receptors 
in cells, their physiological functions in Eph receptor 
signalling are unclear. Nevertheless, it is encouraging that 
several of these proteins are implicated in the regulation 
of the cytoskeleton and cell migrations. 

The  p85 subunit of PI 3'-kinase and a novel adapter 
protein SLAP (which is homologous to the Src tyrosine 
kinase but lacks a catalytic domain) were identified in 
a screen using EphA2 [10,40]. A separate screen using 
EphB1 as bait pulled out the SH2 domains of adapter 
proteins Grb2 and Grbl0 as well as Nck [11,41]. Grbl0 is 
of particular interest because it shares a central -300 amino 
acid region of homology; including a pleckstrin homology 
(PH) domain, with the C. elegans protein mig-10, which is 
involved in axonal and cellular migrations [42]. 

The  Src family kinase Fyn interacts with EphA4 in 
vitro via a juxtamembrane tyrosine residue (Tyr602) [8°]. 
There are reports that Src and Yes similarly interact with 
Eph receptors [5], and it is possible that engagement 
of Src family kinases may be regulated by competition 
with the catalytically inactive SLAP. Src family kinases 
are highly expressed in the developing nervous system 
and arc concentrated in axons and growth cones [43]. 
Functions of Src family kinases include regulation of 
phosphorylation of cytoskeletal proteins and assembly of 
focal adhesions [44,45]. 

We have found that the Ras GTPase-activating protein 
(RasGAP) associates with EphB2 [9"]. In the NG108 
neuronal cell line, activation of EphB2 also leads to the 
phosphorylation of the docking protein p62 dok, which 

Phenotypes of targetted mutations in Eph receptor genes. 

Receptor Defect Comment Reference 

EphA8-/- 

EphB2-/- 

EphB21acz/lacz 

EphB3-/- 

EphB2 -/- ; 
EphB3-/- 

Abnormal ipsilateral projection of some 
superior colliculus axons into spinal cord 

Abnormal ventral projection of posterior 
anterior commissure axons 

Normal anterior commissure (in 129 and 
CD1 genetic backgrounds) 

Failure of axons of corpus callosum to 
cross the midline 

More severe anterior commissure and 
corpus callosum defects 
Additional defect in fasciculation of 
axons of habenular-interpenduncular tract 
Cleft palate 

EphB2 expression ventral to commissure 
Commissure axons express B class ephrins 

Replaces kinase domain with ~-galactosidase 
Retains extracellular transmembrane and 
juxtamembrane sequences 
Suggests possible signalling function for 
ligand in axons 

Partially penetrant 

Indicates functional redundancy of 
EphB2 and EphB3 

[1 g' ]  

[20"'] 

[2o"] 

[21"] 

[21"] 
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subsequently binds both RasGAP and the SH2/SH3 
domain adapter protein Nck. These events appear to be 
coupled to receptor activation through juxtamembrane 
tyrosine residues Tyr604 and Tyr610 (of EphB2). An 
independent report suggests that the SH2 domain of Nck 
is able to bind directly to EphB1 via juxtamembrane 
tyrosine Tyr594, and that this engagement leads to 
activation of c-Jun kinase [41]. While cell-type differences 
may determine whether Nck interacts directly or via 
p62 dok with activated Eph receptors, this protein is now 
strongly implicated in Eph receptor signal transduction. 
These findings are of great interest considering the known 
role of the Drosophila homologue of Nck (Dock) in the 
pathfinding of photoreceptor axons [46°]. Mammalian Nck 
is known to interact with two Cdc42/Rac-binding proteins, 
WASP (Wiskott-Aldrich syndrome protein) [47] and the 
serine/threonine kinase mPAK-3 I48]. Thus, Nck may be 
an important regulator of cellular function downstream 
of Eph receptor activation. In addition to mediating 
interactions with p62 d°k and Nck, the amino-terminal 
region of RasGAP affects the actin cytoskeleton, causing 
cell rounding and dissolution of actin stress fibres, 
possibly as a consequence of its association with p190, a 
GTPase-activating protein for Rho [49,50]. 

Recent evidence suggests that the state of ligand cluster- 
ing is also exquisitely important in determining the cellular 
response to receptor engagement (E Stein et aL, personal 
communication; see Note added in proof). Soluble aggre- 
gated ephrin-B1 presented in tetrameric form (in contrast 
to dimeric or higher-order forms) was able to initiate 
vascular network formation in EphBl-expressing vascular 
endothelial cells, and engagement of the LMW-PTP at 
Tyr929 of EphB1. Conversely, all multimeric forms of the 
ligand could cause receptor tyrosine phosphorylation and 
binding of SH2-domain-containing proteins. 

An intrinsic signalling function for ephrins? 
The striking degree of conservation between the cy- 
toplasmic domains of the three transmembrane ephrins 
initially hinted that they may possess an intrinsic signalling 
function [14°°1. Genetic evidence for transmembrane 
ephrin signalling came unexpectedly from analysis of 
mice homozygous for EphB2 mutant alleles [20"]. The  
misrouting of anterior commissure axons in EphB2-/- 
animals appears to be a non-cell-autonomous effect of 
EphB2 as it is cells underlying the anterior commissure 
that express the receptor, whereas the axons themselves 
express B class ephrins (Table 2; Figure 3). In some 
genetic backgrounds, however, the anterior commissure 
forms normally when the kinase domain of EphB2 is 
replaced with 13-galactosidase. One possible interpretation 
of these results is that the EphB2-expressing cells can 
guide the migration of transmembrane-ephrin-expressing 
axons by a process requiring the extracellular but not 
the kinase domain of the receptor, implying a signal 
may be relayed into the axons through the ligand. It is 
attractive to imagine that such a bidirectional signal could 

be important in setting up boundaries where receptor- and 
ligand-expressing cells are not allowed to mix, such as in 
specification of rhombomeres. 

Biochemical evidence to suggest that the cytoplasmic 
tails of B class ephrins might have a dynamic function 
in signalling came with the demonstration that the 
cytoplasmic region of ephrin-B1 was a good in vitro 
and in vivo substrate for the activated Src tytosine 
kinase [14°°,51"°]. In addition, treatment of B class 
ephrin-expressing cells with the soluble extracellular 
domain of EphB2 or co-culture with EphB2-expressing 
cells stimulated tyrosine phosphorylation of the ligand 
cytoplasmic domain [14°°]. In a similar study, Bruckner 
et al. [51"] demonstrated that tyrosine phosphorylation 
of transmembrane ephrins could also be achieved by 
stimulation of the cells with platelet-derived growth 
factor (PDGF). Intriguingly, the cytoplasmic domain of 
ephrin-B1 was able to suppress the transforming ability 
of activated tyrosine kinases when expressed in the same 
cell, suggesting a possible two-way crosstalk between 
transmembrane ephrins and RTKs [3,51°°]. 

The  function of tyrosine phosphorylation of B-type 
ephrins remains to be established. It might induce or 
inhibit interactions with cytoplasmic signalling proteins 
or cytoskeletal components, producing a response in 
ligand-expressing cells. Phosphorylation might also modify 
ligand clustering, and hence could have an inside-out 
effect on receptor activation (Figure 3b). Whilst there are 
no data to suggest that A class ephrins function other than 
as classical surface bound tyrosine kinase ligands, it is 
interesting to speculate that they may also relay cellular 
signals, as Src family kinases can be co-precipitated with 
other GPI-linked proteins [52,53]. 

Bidirectional signalling mediated by receptor 
protein tyrosine phosphatase I~ 
Although much has been learned about the action of RTKs 
in the response of cells to extracellular signals, less is 
known about the regulation and function of receptor-type 
protein tyrosine phosphatases (RPTPs) in these processes. 
Genetic studies in Drosophila have demonstrated that 
receptor protein phosphatases play an important role 
in the guidance of several motor neurons to their 
target muscles [54",55"]. Their  function appears to be 
similar to that of cell adhesion molecules in sensing 
environmental cues during the process of cell guidance. All 
RPTPs are composed of an extracellular domain, a single 
transmembrane domain and a cytoplasmic portion, which 
usually contains two tandem protein tyrosine phosphatase 
domains. The extracellular domain of many receptor-like 
tyrosine phosphatases shares structural similarities with 
cell adhesion molecules, suggesting that they play a 
role in cell-cell communication by directly coupling cell 
recognition events to signal transduction pathways within 
the cell. 
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Figure 3 
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Transmembrane ephrins may relay cellular signals. (a) Mice homozygous for the EphB2 null allele exhibit a defect in the anterior commissure, 
where transmembrane-ephrin-expressing axons (light grey) originating in the temporal cortex plunge ventrally into a territory that expresses 
EphB2 (dark grey) in wild-type mice. In EphB2 lacz/lacz mice (in 129 and CD1 backgrounds), axons are correctly guided by EphB2 protein lacking 
the kinase domain. (b) Model for bidirectional signalling: EphB2 receptor interaction with transmembrane ephrins causes mutual clustering 
of proteins, activating both receptor and ephrin tyrosine phosphorylation, and initiating putative signals in both cells (left). When the EphB2 
kinase domain is replaced with l~-galactosidase (~-ga[), no signal is relayed into the receptor-expressing cell, but ephrin signalling is still initiated 
(centre). This signal may guide anterior commissure axons-see (a). It is also tempting to speculate that GPl-linked ephrins may mediate such a 
bidirectional signal (right). acA, anterior commissure pars anterior tract; ace anterior commissure pars posterior tract. 

RPTPI3 (also known as RPTP~) is expressed on the 
surface of glial cells and may function to regulate 
the growth of axons via reverse signalling through a 
protein complex on an adjacent cell, analogous to the 
Eph receptor-ephrin system. RPTP]3 contains in its 
extracellular portion a carbonic anhydrase (CAH) domain, 
a fibronectin type Ill repeat and a large cysteine-rich 

region [56,57]. It exists in three forms that are generated 
by alternative RNA splicing: one form is a secreted protein 
composed of the entire extracellular domain, whereas 
the two other forms are transmembrane receptors that 
differ by the absence of 860 amino acids from the 
cysteine-rich region of the extracellular domain of the 
longer form. Both the secreted form and the long receptor 
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form were identified as chondroitin sulfate proteoglycans 
[58]. It was demonstrated that the proteoglycan forms of 
RPTP[8 bind in vitro to the extracellular matrix protein 
tenascin, as well as to the adhesion molecules neuronal 
cell adhesion molecule (N-CAM) and neuronal-glial cell 
adhesion molecule (Ng-CAM), suggesting that these 
proteins may function as ligands of RPTPI3 [59,60]. 
However, it was impossible to detect any effect on 
the intrinsic protein tyrosine phosphatase activity upon 
binding of these proteins to the extracellular domain of 
RPTP[3. 

In our search for a physiological ligand of RPTPI3, we 
found that the CAH domain of this phosphatase binds 
with high affinity and specificity to a 140kDa protein 
that is expressed on the cell surface of neuronal cells 
[60]. Affinity purification and expression cloning with the 
CAH domain of RPTP[3 as a specific probe demonstrated 
that the 140kDa protein is contactin: a GPI-anchored 
cell recognition molecule that functions as a neuronal 
receptor. This raised the possibility that the CAH domain 
of RPTPI8 may function as a ligand for contactin. Indeed, 
the binding of RPTP[8 (expressed on glial cells) to 
contactin (on neuronal cells) leads to cell adhesion and 
neurite outgrowth, indicating that contactin is a functional 
neuronal receptor for the CAH domain of RPTPI3 [61]. 
These interactions may lead to bidirectional signalling 
between neurons and glial cells. In addition to the signal 
generated in neurons by contactin, RPTP[8 may also 
serve as a receptor that transduces an extracellular signal 
mediated by its tyrosine phosphatase domains into glial 
cells (Figure 4). However, so far, we are unable to detect 
changes in phosphatase activity in response to binding 
of contactin to the extracellular domain of RPTPI3. In 
addition, very little is known about the signal generated 
in glial cells as a result of contactin/RPTPl~ complex 
formation. 

RPTPI3 as a l igand for contactin in neuronal  
signal l ing 
RPTP[3 expressed on the surface of glial cells binds to 
a neuronal cell recognition complex that consists of sev- 
eral proteins, including contactin, the neurexin-like pro- 
tein Caspr and Nr-CAM (Ng-CAM-related cell adhesion 
molecule) [62°,63]. Analysis of neurite growth induced by 
different domains of the extracellular region of RPTPI3 
demonstrated that in addition to contactin, Nt-CAM plays 
a role in this process [63]. Recent experiments suggest that 
the cooperation between Nr-CAM and contactin occurs in 
an ordered manner. The  initial association is mediated by 
interactions between contactin and the CAH of RPTP~; 
this interaction may not be sufficient for mediating the 
full neurite-promoting activity of RPTP[3. It appears that 
additional interactions between the cysteine-rich region of 
RPTP~ and Nr-CAM are required for induction of long 
neurites. 

Another protein that is found in a complex with contactin 
is the transmembrane protein Caspr. The extracellu- 
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A model for bidirectional signals mediated by interactions between 
RPTP[3 and contactin. Soluble and membrane forms of RPTP~ 
expressed on the surface of glial cells bind to contactin expressed 
on the surface of neuronal cells. Contactin is a GPl-linked protein, 
and at least part of the signalling events that are regulated by RPTP~ 
binding to contactin are probably mediated by the transmembrane 
receptor Caspr. Both Caspr and contactin are expressed on the cell 
surface of neuronal cells. A proline-rich sequence in the cytoplasmic 
domain of Caspr may serve as a binding site for SH3 domains of 
signalling molecules. The binding of contactin to RPTP[3 may lead 
to a signal in glial cells that is mediated by the protein tyrosine 
phosphatase domain of RPTP[],. 

lar domain of Caspr contains multiple domains impli- 
cated in mediating protein-protein interactions [56,64]. 
It was demonstrated that Caspr associates with contactin 
molecules that are present in the same cell membrane, 
suggesting that Caspr may function as a signalling subunit 
that mediates the biological effects of contactin. The  cyto- 
plasmic domain of Caspr contains a proline-rich sequence 
capable of binding to a subset of SH3 domains of signalling 
proteins, which may transduce the biological effects of 
contactin [62°]. It was demonstrated that the intracellular 
domain of neurexin, the Drosophila homologue of Caspr, 
is required for the localisation of D4.1-coracle protein, a 
protein essential for the formation of septate junctions 
[65]. In vertebrates, Caspr may interact with D4.1/ERM, 
a protein that could provide a link to the cytoskeletal 
network [64]. Contactin itself was found to be associated 
with the protein tyrosine kinase Fyn, raising the possibility 
that Src family kinases may participate in the control of 
signalling pathways downstream of contactin [53,66]. As 
is the case with other GPI-linked proteins, it is not clear 
how this association occurs. However, it is possible that the 
interaction between contactin and Src kinases is indirectly 
mediated by Caspr or by another transmembrane receptor 
that associates with contactin in the plane of the 
membrane [53]. In addition, it was demonstrated that 
Nr-CAM binds to ankyrin, a spectrin-binding protein 
that links the actin cytoskeleton to the cell membrane 
[67]. The  carboxy-terminal tail of Nr-CAM contains a 
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potential binding site for PDZ-containing proteins. Thus, 
the cytoplasmic tail of Caspr and Nt-CAM may recruit 
PDZ and SH3 domain-containing proteins, as well as other 
signalling molecules, to specific regions of cell-cell con- 
tacts, thereby regulating intracellular signalling machinery 
and cytoskeletal changes that take place during neurite 
outgrowth. 

Conclusions 
It appears that in interactions between Eph receptors and 
transmembrane ephrins as well as between RPTP[3 and 
contactin, it is not only the catalytically active receptors 
that possess intrinsic signalling activity, but also the 
cognate ligands. Dissection of signalling downstream of 
Eph receptors and the contactin/Caspr complex in neurons 
may enable us to determine the links between axonal 
pathfinding cue receptors, axonal outgrowth and regulation 
of the cytoskeleton. The biochemical nature and biological 
functions of reciprocal ephrin and RPTPI3 signalling are at 
present unclear, but represent interesting and challenging 
directions for future investigation. 

Note added in proof 
The work referred to in the text as (E Stein etaL, personal 
communication) is now in press [68]. 
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