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Neoantigen immunogenicity prediction is a 
burgeoning field with vast potential; however, 
the shortage of high-quality data and biases in 
current datasets limit model generalizability. 
Here we discuss some of the pitfalls that may 
underly this limited performance and propose 
a path forward.

Neoantigen-based personalized tumor therapies are emerging as a 
promising treatment modality. Although efficient and accurate selec-
tion of immunogenic neoantigens is a critical determinant of therapy 
success, the number of candidates to select from frequently exceeds 
the therapy’s payload. For example, in melanoma there are typically 
around ten times more candidate mutations than can be included in a 
neoantigen vaccine. This selection issue is further compounded by a 
low base rate of neoantigen immunogenicity (~2–6%)1, which we define 
here as the ability of a neoantigen to elicit a T cell response, and by the 
fact that most neoantigens are unique to a tumor.

Although in vitro neoantigen immunogenicity screening 
approaches are improving in accuracy and throughput, they remain 
resource intensive. Computational immunogenicity-prediction models 
therefore offer higher efficiency and are frequently relied upon for 
target selection. Despite recent improvements in models assessing 
immunogenicity, however, their performance is limited by a short-
age of diverse, high-quality data. In particular, the generalizability of 
models to a highly variable domain, such as neoantigens presented on a 
diverse set of human leukocyte (HLA) molecules, remains challenging.

In this Comment, we focus on approaches for predicting 
antigen-specific CD8+ T cell responses; the prediction of CD4+ T cell 
responses is less well developed, and the issues discussed here are even 
more pronounced in that context.

Publicly available datasets are limited and skewed
A general rule in machine learning is that more data are often bet-
ter. Although high data quality is also essential, highly variable and 
irregular distributions require substantial data volumes for accuracy 
and generalizability. Neoantigens are both naturally rare and hard to 
identify; for example, gastrointestinal tumors typically harbor one 
to three immunogenic neoantigens1. As such, neoantigen training 
data from primary tumors are slow to accrue and very scarce, with 
2,067 human neoantigens currently deposited in the CEDAR database2 
(accessed in September 2023). In practice, models are trained on data-
sets from more accessible proxy sources, such as viral and wild-type 
self-peptides. This is a considerably smaller pool of source epitopes 

compared to the space of possible neoantigens, which can arise from 
even a single-amino-acid change to a self-peptide. The degree of change 
required for a self-peptide to escape central tolerance remains to be 
established. Existing data sources therefore do not capture the type 
of variance seen in mutated self-neoantigens, a gap that is reflected in 
the limitations of existing models.

Additional biases in the existing datasets of immunogenic neoan-
tigens affect their usefulness in training prediction algorithms. These 
biases include survivorship bias due to immunoediting, ascertain-
ment bias of major histocompatibility class (MHC) alleles due to an 
over-representation of samples with European ancestry, and tumor 
type bias due to tumors with a high mutational burden. Moreover, 
to accommodate the limited throughput of screening methods, it is 
common to pre-select targets using a peptide–MHC binding predictor, 
which propagates bias from the predictor training set into new training 
data. For example, models trained using immunopeptidomics data 
systematically under-represent cysteine-containing peptides3. Finally, 
immunogenicity screening assays yield a variety of outputs related 
to T cell activity or neoepitope–HLA recognition, leading to variable 
definitions of immunogenicity that could introduce observer bias.

Classification-based supervised learning requires negative train-
ing data. However, technical factors such as assay sensitivity and bio-
logical factors such as T cell state may contribute to ‘false negative’ 
data, whereby a neoantigen may be immunogenic in another context 
(Fig. 1a). For instance, differences have been observed in neoantigen 
reactivity in patient samples before and after immunotherapy4. This can 
be problematic, especially for models that consider only the peptide–
MHC pair as inputs. Neoantigens may elicit a response in some patients 
but not others, which may be predictable from their T cell repertoire, 
expression profile or other patient-specific features.

Although unbiased immunogenicity datasets are beginning to 
emerge in increasing volumes, additional steps are likely to be required 
to achieve robust neoantigen prediction.

Going beyond peptide–MHC presentation
The formation of peptide–MHC (pMHC) complexes is a prerequisite 
for T cell immunogenicity; however, given the numerous factors that 
affect neoantigen immunogenicity beyond pMHC complex formation, 
there is a need for a holistic, multimodal approach to immunogenicity 
modeling that goes beyond peptide–MHC pairings (Fig. 1b).

Improved immunogenicity prediction of antigens has been dem-
onstrated in models utilizing existing datasets of known immunogenic 
pMHC combinations alone. Additional features such as the stability of a 
pMHC complex, physiochemical properties of immunogenic epitopes 
and HLA-specific anchor locations make it possible to learn from either 
feature engineering5 or transfer learning techniques6. Features such as 
pMHC complex stability can be predicted from pMHCs and included 
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Fig. 1 | Challenges and future directions in cancer neoantigen-prediction 
methods. a, Representation of two categories of issues with current data 
sources. Pre-selection with pMHC models before immunogenicity screening 
removes many possible variants before testing. This creates a carried-over 
bias from existing models due to untested targets. Immunogenicity screening 
methods currently have low sensitivity, resulting in a high possibility of false 

negatives from screening experiments. b, Factors contributing to improved 
neoantigen prediction in future models. Expanded feature sets are necessary 
to give a full picture of immunogenicity, providing important context and 
functional information beyond pMHC inputs. New methods of immunogenicity 
screening can reduce bias in future datasets by screening a broader set of targets. 
New screening technologies make large-scale datasets possible.
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in downstream models as additional inputs7, but this requires specific 
training datasets. With larger volumes of data, these methods are likely 
to provide improved immunogenicity prediction compared to pMHC 
binding models; however, inputs beyond the peptide–MHC pairing are 
required to get a full picture of antigen immunogenicity.

Structural modeling of pMHC class I complexes interacting with 
their cognate T cell receptors (TCRs) can complement immunogenicity- 
prediction efforts. Although the number of experimentally derived 
structures available for training is limited, this may be addressed by 
improvements in the accuracy of models that predict the 3D structure 
of a protein. This strategy has yielded some early successes, with adap-
tions of AlphaFold being used to predict pMHC binding8. Going beyond 
pMHC binding with existing datasets remains challenging because 
of the variability of neoantigens — especially if TCR binding is being 
modeled. Moreover, it is noteworthy that current structural models 
generate a fixed structure, which may not provide the types of features 
necessary for a functional classification such as immunogenicity.

To improve the practical usefulness of prediction models in a can-
cer neoantigen setting, it may be necessary to include patient-specific 
antigenicity features in future models alongside global immunogenic-
ity features. If the goal is to predict neoantigens that could serve as 
viable treatment targets, there are numerous tumor-intrinsic features 
that could influence target selection, including antigen-presentation 
capability, sufficient neoantigen expression levels and clonality within 
the tumor. Neoantigen expression is required for T cell recognition, 
with several models demonstrating the value of including expression 
levels7. However, immunogenicity assays do not directly measure 
antigen expression features, and most publicly available datasets 
do not include it, complicating training and benchmarking efforts. 
Similarly, the prevalence of a neoantigen within the tumor cell pop-
ulation (that is, antigen clonality) also contributes to the ability to 
mount antigen-specific T cell responses9, but this information is not 
routinely incorporated into existing modeling efforts. T cell immune 
evasion, a feature of many advanced tumors, is also relevant to future 
neoantigen-prediction models. Direct loss of neoantigen recognition 
can occur via neoantigen loss or via compromised antigen presenta-
tion10. Interestingly, HLA loss is frequently subclonal11, which would 
render clonal neoantigens presented by the lost HLA allele effectively 
subclonal. HLA loss is frequently observed following resistance to 
personalized immunotherapy. This selective pressure may be miti-
gated by simultaneously targeting multiple neoantigens presented by 
diverse HLA alleles, and by accounting for compromised antigen pres-
entation as a component in target selection. In this regard, one could 
favor neoantigens predicted to be presented by extant HLA alleles and 
redundantly across multiple HLA alleles. Moreover, a strategy should 
not ignore the potential for MHC class II presentation.

Finally, improved prediction of immunogenic neoantigens can 
only be achieved by factoring in donor-specific TCR repertoires. It 
would also be beneficial to include additional related patient-specific 
information, such as the full HLA background, in future datasets to 
give a broader description of the TCR landscape, informing patient 
responses12. Predicting which TCRs’ post-thymic selection are likely 
to elicit immune responses against neoantigens defines true immu-
nogenicity. There are currently very limited data available that incor-
porate fully paired TCR chains, mostly focused on a handful of viral 
epitopes. As a result, TCR specificity models generalize poorly to 
unseen epitopes, confirmed in benchmarking studies13. Benchmark-
ing with additional inputs, such as TCRs, highlights the issue of data 
leakage between training and test sets, with cross-contamination by 

similar epitopes between sets resulting in artificially inflated perfor-
mance metrics. There are 1,409 TCRs with known reactivity to HLA class 
I-presented neoantigens in the CEDAR database2 (accessed in Septem-
ber 2023), limiting any neoepitope-specific predictions. Generalization 
to unseen epitopes would be required for mostly private neoantigens. 
Without a TCR component, only part of the picture is being considered 
by the model, limiting potential accuracy. With new single-cell screen-
ing techniques, the volume and quality of paired TCR data will continue 
to increase — allowing paired TCR–peptide–HLA triplet data to be 
more easily included in antigen-immunogenicity-prediction models. 
Importantly, this will help to assign orphan TCRs to their cognate anti-
gens, which could advance tumor-infiltrating lymphocyte (TIL)-based 
adoptive cell therapies.

Improved screening methods to generate large datasets
Rapid innovation in immunogenicity screening technology is essen-
tial for enabling the production of data at higher throughput. To 
date, improved patient-specific screening techniques such as HAN-
Solo14 allow faster and lower-bias neoantigen screening by reducing 
the need for pre-selection. Next-generation multimer assays permit 
high-throughput screening with high specificity4. Library-on-library 
screening techniques aim to perform screening on much larger scales 
than previously seen, with libraries of sizes up to 105 targets being 
reported. Methods such as ENTER-seq15 allow additional features such 
as cell state to be measured during single-cell screening. This is begin-
ning to shift the data-production bottleneck from assay screening 
capacity to sample acquisition.

Multimodal screening technologies will be important to both 
increase the volume of neoantigen datasets and improve the quality 
of data. Several newer screening methods will allow large increases in 
the number of known immunogenic pMHC complexes, the main inputs 
used by existing immunogenicity models. Increased data volume 
alone has been shown to improve performance and allow improved 
generalization to unseen targets, such as SARS-CoV-25. Increases in 
data volumes will continue to improve models, but these improve-
ments will become marginal as more immunogenic neoantigens are 
identified. Other screening methods can expand the depth of available 
features, for example allowing larger-scale datasets that include TCR 
specificities. New tools promise to give us a refined view of immuno-
genicity, factoring in additional features such as cell state15, which will 
be important to future modeling efforts.

In building robust neoantigen immunogenicity-prediction 
models, data from both healthy donor sources and cancer-specific 
data sources will be useful. In vitro-stimulated T cells from healthy 
donors provide an abundant, controlled source of functional T cells, 
avoiding the patient-specific confounders seen in cancer patients. 
Datasets from patients with cancer, especially when accompanied by 
trial outcome information, are equally important in predictive model 
development. Although likely to be available in smaller numbers long 
term, they are required to properly test model efficacy and explore 
cancer-specific variance not explained by future models to identify 
additional features.

Conclusions and the future of immunogenicity prediction
Large datasets with low bias in generation streams will be necessary 
to build robust prediction algorithms. Though there have been many 
improvements in modeling methodologies in recent years, the limited 
distribution and volume of data points means that we expect currently 
available models to underperform on new datasets.
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The current reliance on pMHC inputs in most modeling approaches 
reflects the available data. Other input sources are being investigated, 
but data sizes remain very small. It is our view that other inputs, such 
as TCR specificity and expression information, are required to come 
close to a full picture of the immunogenic potential of a neoantigen. 
Increases in the availability of immunogenic pMHC for neoantigens 
will undoubtedly improve performance in the short term, but there 
are limits to what can be learned from the pMHC alone. Future reliable 
prediction algorithms will require a wider variety of features in high 
volume to be effective.

Finally, it is essential that the community continues its commit-
ment to sharing and harmonizing these critical datasets. A combined 
input approach to immunogenicity modeling is necessary, along with 
large-scale data gathering and sharing.
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