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Abstract Since the pioneering discovery that the genetic

cell death program in C. elegans is executed by the cys-

teine-aspartate protease (caspase) CED3, caspase activation

has become nearly synonymous with apoptosis. A critical

mass of data accumulated in the past few years, have clearly

established that apoptotic caspases can also participate in a

variety of non-apoptotic processes. The roles of caspases

during these processes and the regulatory mechanisms that

prevent unrestrained caspase activity remain to be fully

investigated, and may vary in different cellular contexts.

Significantly, some of these processes, such as terminal

differentiation of vertebrate lens fiber cells and red blood

cells, as well as spermatid terminal differentiation and

dendritic pruning of sensory neurons in Drosophila, all

involve proteolytic degradation of major cellular compart-

ments, and are conceptually, molecularly, biochemically,

and morphologically reminiscent of apoptosis. Moreover,

some of these model systems bear added values for the

study of caspase activation/apoptosis. For example, the

Drosophila sperm differentiation is the only system known

in invertebrate which absolutely requires the mitochondrial

pathway (i.e. Cyt c). The existence of testis-specific genes

for many of the components in the electron transport chain,

including Cyt c, facilitates the use of the Drosophila sperm

system to investigate possible roles of these otherwise

essential proteins in caspase activation. Caspases are also

involved in a wide range of other vital processes of non-

degenerative nature, indicating that these proteases play

much more diverse roles than previously assumed. In this

essay, we review genetic, cytological, and molecular studies

conducted in Drosophila, vertebrate, and cultured cells,

which underlie the foundations of this newly emerging field.
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Introduction

Virtually all cells of higher metazoans contain a genetic

death program called programmed cell death (PCD) that

usually functions to eliminate unwanted and potentially

dangerous cells [1–6]. The pathogenesis of many diseases,

including cancer and neurodegenerative disorders is

attributed to the malfunctioning of PCD [7–10]. Apoptosis,

the most common form of PCD, is characterized by a

conserved sequence of morphological, cytological, and

biochemical events [11–15]. A key feature of apoptosis is

the activation of a unique family of cysteine-dependent

aspartate specific proteases called caspases. The mamma-

lian genome encodes fourteen distinct caspases, seven of

which were shown to function in apoptosis and will

henceforth be termed apoptotic caspases or simply casp-

ases [16, 17].

Caspases are synthesized as inactive proenzymes, which

work in a precisely controlled proteolytic cascade to acti-

vate themselves and one another [18–24]. The apoptotic

caspases are generally classified as initiators (also called

apical) or effectors (also known as executioners), depend-

ing on their position in the proteolytic hierarchy. Initiator

caspases are activated through dimerization facilitated at

multi-protein complexes. Activation of caspase-9, the ini-

tiator caspase of the intrinsic pathway, involves its

recruitment to the apoptosome by Apaf-1-Cyt c complex,
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while the apical caspase of the extrinsic apoptotic pathway

caspase-8 is activated within the death-inducing signaling

complex (DISC) [25–29]. An adaptor-independent oligo-

merization mechanism for activation of caspase-8 was also

suggested recently [30]. On the other hand, activation of

effector caspases, such as caspase-3 and -7 occurs upon

their cleavage at specific internal aspartic acid residues by

initiator caspases [28, 29]. Downstream of this activational

cascade, caspases cleave a variety of regulatory and

structural proteins and important enzymes, ultimately

leading to cell death. The morphological manifestations of

apoptosis include cell detachment and shrinkage, nuclear

condensation and segmentation, membrane blebbing, and

disassembly into apoptotic bodies that are often engulfed

by neighboring cells or phagocytes [13, 14, 31–34]. Some

biochemical aspects occuring during apoptosis can also be

detected using various methods. For example, DNA frag-

mentation can be detected by terminal deoxynucleotidyl

transferase (TdT)-mediated dUTP nick-end labeling

(TUNEL) assay [35, 36], caspase activity may be revealed

by detecting cleavage of known endogenous caspase tar-

gets, such as the DNA repair enzyme poly(ADP-ribose)

polymerase (PARP) and the nuclear intermediate filaments

(lamins), or labeled synthetic substrates or inhibitors [37],

whereas the cleaved and thus active form of caspases can

be visualized using specific antibodies [38].

In addition to regulation by activating proteins, caspases

are also negatively regulated by the inhibitor of apoptosis

proteins (IAPs), which can bind to and inhibit caspases in

both insects and mammals [39–42]. Studies in Drosophila

provided important insights into the anti-apoptotic function

of IAPs [43]. Drosophila IAP1 (Diap1) encodes an E3

ubiquitin ligase that ensures cell viability by preventing

inappropriate caspase activation and apoptosis [44–46]. In

living cells, Diap1 promotes ubiquitination and degradation

of the apoptotic initiator caspase Dronc [47, 48] and blocks

effector caspases by targeting them for polyubiquitynation

and nonproteasomal inactivation [49]. Upon receipt of

apoptotic stimuli, Diap1 is inactivated by Reaper-family

proteins [44–46, 50]. Reaper stimulates the self-conjuga-

tion and degradation of Diap1, thereby irreversibly

removing this critical caspase inhibitor [51]. In mammals,

induction of apoptosis in thymocytes induces the auto-

ubiquitination and degradation of IAPs [52], and targeted

removal of the RING domain of XIAP leads to the sta-

bilization of this caspase inhibitor [53]. Therefore, the

physiological requirement of the IAPs’ ubiquitin-ligase

activity for the inhibition of caspases has been conserved in

evolution (Fig. 1).

Here, we review evidence suggesting that in addition to

their pivotal role in cell death, apoptotic caspases normally

play an important role in a variety of non-apoptotic and

apoptosis-like vital processes, including cell differentiation,

cell signaling, and cellular remodeling. We also generally

distinguish between the processes involving partial cellu-

lar degeneration, which are conceptually reminiscent of

apoptosis and other processes that, at least superficially, do

not seem to involve massive cellular proteolysis. Several

recent reviews that cover some aspects of these processes

are also available [23, 54–59]. In this essay, however, we

focus and elaborate on the processes during which the

apoptotic caspases are involved and, when relevant,

indicate the molecular and morphological similarities

among these processes and between them and conven-

tional apoptosis. Although the mechanisms that prevent

excessive caspase activity and undesirable cell death

during these processes as well as those that restrict caspase

activity to only a few substrates remained largely

unexplained, in the concluding remarks section we discuss

potential mechanisms based on rigorous survey of the

relevant literature.

Programmed elimination of cellular content

During apoptotic cell death, caspases orchestrate restricted

proteolysis of several hundred proteins, resulting in

demolition of cellular structures and organelles [60]. Given

the ability of caspases to mediate cleavage of substrate

proteins in a precisely controlled manner that is harmless to

neighboring cells, it should not come as a complete sur-

prise that some cells have developed mechanisms allowing

the harnessing of these molecular knives to mediate only

partial degeneration of their cellular content during normal

Fig. 1 The conserved core apoptotic machinery in Drosophila and

mammals. A schematic model of the major components in the

conserved apoptotic machinery. Mammalian proteins are indicated in

black, while their Drosophila counterparts are shown in purple and

are flanked by parentheses. IAPs are found in both organisms. Arrows

represent activation and T-shapes indicate inhibition. Dashed lines

represent lack of biochemical evidence
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specialization. The early observations of such phenomenon

can be dated back to the beginning of the twentieth century

when researchers looked under a light microscope at dif-

ferentiating lens fiber cells, sperm cells, and mammalian

red blood cells, and noticed that these cells shed off much

of their cellular content [61–63]. The more recent emer-

gence of biochemical, histological, and genetic assays for

detection and assessment of apoptotic mechanisms have

facilitated the first comparative studies of these processes

and apoptosis in both vertebrates and Drosophila.

Loss of organelles and enucleation during terminal lens

fiber cell differentiation

The role of vertebrate lens is to focus light on the retina.

Lens fiber cells must therefore turn transparent with min-

imized potential light scatter from their cytoplasmic

organelles. During embryonic development, organelle

degradation is triggered in cells in the center of the lens,

which is characterized by a rapid and coordinated disap-

pearance of all membrane-bound organelles (Fig. 2a–c)

[64]. Despite the absence of organelles, cells in the lens

core continue to live in the sense that they continue to

metabolize and persist throughout the life of an individual

[65]. This unique terminal differentiation process is

accompanied by a series of morphological and biochemical

events that bear high resemblance to those that occur

during apoptosis. For example, nuclear chromatin con-

denses, nuclear pores cluster, nucleolar structure changes,

and eventually DNA fragments are produced that stain

positively in a TUNEL assay (Fig. 2b) [66–69]. Other

organelles, such as the endoplasmic reticulum and Golgi

complex disintegrate, while the mitochondria fragment and

fail to maintain membrane potential [70–72]. This process

also involves proteolytic cleavage of known substrates of

caspases, including PARP, lamin A/C and lamin B, and the

actin-cross-linking protein Spectrin [67–69, 73]. Further-

more, denucleation and PARP cleavage in differentiating

lens cells in culture were inhibited in the presence of

peptide inhibitors of caspase-3, as well as upon addition of

synthetic peptide inhibitors of caspase-1, -2, -4, -6, and -9

[69, 74]. Overexpression of the anti-apoptotic protein Bcl-2

in mice or chicken lenses also resulted in the abnormal

retention of nuclei in the inner fiber cells [75, 76].

Although these studies support the notion that the apoptotic

machinery is utilized during lens cell organelle degrada-

tion, lens fiber differentiation also exhibits many aspects

that fundamentally differ from apoptosis. For example,

whereas apoptotic cells usually exhibit membrane bleb-

bing, there is no evidence of membrane blebbing or the

formation of apoptotic bodies in lens fiber cells, but

instead, aging lens fiber cells are compressed into the

center of the lens, where they undergo cell-cell fusion and

the formation of specialized membrane interdigitations [67,

73]. Moreover the caspase cleavage of the cytoskeletal

protein a-spectrin, which is believed to be important for

membrane blebbing, results in a short-lived protein in

apoptotic cells, but cleaved fragments of a- and b- spect-

rins during terminal differentiation and aging of lens fiber

cells appear to remain stable for the lifetime of the

organism and may help maintain permanent remodeling of

the membrane skeleton [73]. In addition, despite the

superficial similarities, lens denucleation also appears to be

distinctly different from classical apoptosis. In mature lens

fibers, other cytoplasmic organelles have already disap-

peared 2–3 days before DNA fragmentation occurs [67]. In

contrast, apoptosis in many cell types is characterized by

the presence of organelles in the cytoplasm of cells in

which the DNA has already been extensively degraded

[77–80]. Furthermore, lens denucleation occurs over the

course of 3–4 days from the onset of nuclear changes to the

complete disappearance of the DNA, which is far slower

than classical apoptosis that can be completed in about 3 h

[81, 82]. Finally, a more recent study using knockout mice

failed to demonstrate any significant alteration of this

process in mice deficient for effector caspase-3, -6, -7, and

the double mutant -3 and -6 [83]. One explanation for the

discrepancy is that these caspase-like activities correspond

to other caspases or other proteases with activities that

partially overlap with caspases. Indeed, Bassnett and col-

leagues showed that caspase-6-like VEIDase activity is

highly distributed throughout the lens from both wild-type

and mice deficient for caspase-6, suggesting that another

protease different from caspase-6 may exhibit this activity

[83]. Additionally, increasing number of cellular proteins,

including alpha- and beta-fodrin, calmodulin-dependent

protein kinases, PARP and tau were found to be dually

susceptible to both caspases and calpains [84], and the

peptide Ac-DEVD-CHO was shown to inhibit not only

caspase-3 activity, but also the activities of caspase-1, -6,

-7, -8, -9, and -10 [85]. Thus, future identification of pro-

teases that are involved in lens fiber cells differentiation

may help to better define the extent of similarly and dif-

ference between this proteolytic process and apoptosis.

Loss of organelles and enucleation during terminal

erythrocyte differentiation

Erythropoiesis is the process by which mature red blood

cells (erythrocytes) are produced [86]. As opposed to

almost all vertebrates, maturation of mammalian erythro-

cytes involves extrusion of their nuclei and organelles,

including mitochondria, endoplasmic reticulum, and cyto-

skeletal structures, providing more space for hemoglobin

[63]. In an early work by Takano-Ohmur and colleagues,

some of the apoptotic and non-apoptotic aspects of this
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process are examined using isolated embryonic erythroid

cells from hamster [87]. Several apoptosis-like features are

described, including DNA fragmentation (although non-

specific), TUNEL positive nuclei, and a marked decrease in

the levels of histone H1 and lamin B2. However, as also

noted by the authors, erythrocyte maturation process is

clearly deviated from apoptosis in several important ways.

Similar to lens fiber cells, enucleation is relatively slow,

taking nearly 3 days to complete. In addition, erythrocytes

display expansion as opposed to the typical apoptosis-

related shrinkage of the cytoplasm, nuclei never form

lobules or become pyknotic, and no apoptotic bodies are

formed [87]. Three subsequent studies have strongly sup-

ported the idea that apoptotic caspases are required for

Fig. 2 Roles of caspases during vital cellular processes. a Drawing of

the rat lens. Lens epithelial cells cover the anterior half of the lens;

those just above the equator proliferate, migrate inward, and differ-

entiate into elongated postmitotic lens fibers, which eventually lose

their nucleus. b Fluorescence micrograph of a frozen section of a post-

natal day 11 rat lens in the region indicated with a square in a, labeled

by TUNEL to detect fragmented DNA (white arrows pointing at two of

the degrading nuclei). c Organelle degradation in the mouse lens from

post-natal day 2. A midsagittal lens section stained with propidium

iodide (arrowheads; orange), to label nuclei, and an antibody against

protein disulfide isomerase (arrows; green), to visualize the distribu-

tion of the endoplasmic reticulum. Note the center of the lens from

which the organelles have been eliminated (white asterisk). d Two

dendritic branches of ddaC sensory neuron in Drosophila undergoing

pruning and are positively labeled for caspase-3-like activity (arrows;

magenta). mCD8 reveals the entire neuron (asterisks; green). Note that

the cell body and the axon are intact and exhibit no caspase activity

(arrowheads). e Active caspase-8 (arrow; red) colocalizes with discrete

small foci within membrane lipid rafts (black asterisks; green) after

T-cell antigen receptor (TCR) stimulation in Jurkat cells. f Fas

stimulation of Jurkat T lymphocytes induces apoptosis. Note the much

more profound activation of caspase-8 (white asterisks; red) that was

exclusively cytosolic. g An elongated mouse spermatid displays active

caspase-3 expression in the cytoplasm (black arrow; green).

h Drosophila spermatids in the process of removing their bulk

cytoplasm. The expelled cytoplasm is collected into a ‘cystic bulge’

(marked by the red filament staining; white asterisk) by an apoptosis-

like process that requires caspase activity (activated effector caspase,

arrowheads; green). Each thread-like structure is a bundle of 64

spermatids. Scale bars b, c = 100 lm. The figures were adopted with

permission from the following a, b from Ishizaki et al. 1998.

Originally published in [69]; c from Bassnett 2002. Originally

published in [64]; d from Williams et al. 2006. Similar figure was

originally published in [120]; e, f from Koenig et al. 2008. Originally

published in [177]; g See in the main text; h from Arama et al. 2003;

originally published in [98]. (Color figure online)
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human and murine erythroid cell differentiation in culture.

These studies showed that Caspase-3, -9, -7, and -2, are

transiently activated during erythroid differentiation, and

that inhibition of caspases by peptide inhibitors, small

interfering RNA (siRNA), and overexpression of the

apoptosis inhibitor kinase Raf-1 all led to a dramatic

reduction in erythroid differentiation with cells arresting at

a relatively early stage as basophilic erythroblast [88–90].

Classical caspase substrates, including PARP, Lamin B,

and Acinus, whose activation by cleavage is required for

chromatin condensation, were also shown to be cleaved

during erythroid differentiation [88–90]. Nonetheless, the

significance of caspase activity for the enucleation process

remains unclear, since the peak in the activity occurs rel-

atively early during differentiation of these cells, suggest-

ing that it may be required to prepare these cells for the

enucleation process by, for example, modulating gene

expression required for this process [91].

Shedding of cytoplasm and organelles during spermatid

terminal differentiation in Drosophila and mammals

Spermatogenesis is the process of sperm formation. In

Drosophila, the male germ cells mature within individual

units termed cysts that also contain two somatic cyst cells.

After completion of four mitotic divisions and meiosis,

each cyst contains 64 haploid round spermatids that are

interconnected by cytoplasmic bridges due to incomplete

cytokinesis. These spermatids mature synchronously as

bundles of 64 members that undergo dramatic metamor-

phosis. The morphological changes include fusion of the

mitochondria into a giant spherical structure called

Nebenkern that extends the length of the tail, hypercon-

densation and structural remodeling of the nuclei that

eventually assume a needle-like shape, and generation of

flagellar axoneme that also dictates spermatid elongation

[92, 93]. By the end of this cellular transformation, the

1.9 mm long bundle of spermatids undergoes the process

of ‘‘individualization’’, during which the 64 interconnected

spermatids are separated from each other by the caudal

movement of an actin-based ‘‘individualization complex’’.

This complex also drives the translocation of a membrane-

bound sack, known as the ‘‘cystic bulge’’, into which the

bulk of the spermatids’ cytoplasm and organelles are col-

lected and eventually discarded as a ‘‘waste bag’’ [94, 95].

Despite the early observations made in a variety of verte-

brates and invertebrates that a mass of ‘‘residual proto-

plasm’’ is sloughed off late in spermatogenesis [96], the

progress in understanding the mechanisms that mediate this

process has been slow. In their early insightful work,

Tokuyasu and colleagues suggested that the organelles

removed by the individualization process might undergo

degradation by mechanisms similar to lysosomal

proteolysis [94], whereas others claimed that this type of

degradation does not seem to be the primary process in

spermatogenesis [97]. Our more recent study in Drosophila

demonstrated that the cytoplasmic compartment in indi-

vidualizing spermatids might be degraded by a process that

is reminiscent of the proteolytic process of apoptosis, as

‘‘cystic bulges’’ and ‘‘waste bags’’ that contain the expelled

cytoplasmic content of the spermatids were positively

marked by acridine orange [98], which specifically stains

apoptotic corpses in Drosophila [99]. Furthermore, acti-

vation of the effector caspase at the onset and during

spermatid individualization was demonstrated, and inhibi-

tion of effector caspase activity in transgenic flies that

ectopically expressed the baculoviral caspase inhibitor

gene p35 or in primary testis cultures supplemented with a

synthetic caspase-3 peptide inhibitor, both impaired proper

movement of the ‘‘individualization complex’’ and the

removal of bulk cytoplasm in differentiating spermatids

(Fig. 2h) [98]. The Drosophila orthologues of the apopto-

some components cytochrome C, Apaf-1 (Ark), and cas-

pase-9 (Dronc) were also shown to be required in this

process. Loss-of-function mutations in the testis-specific

cytochrome C gene cyt-c-d caused male-sterility due to

defects in effector caspase activation, resulting in a sig-

nificant attenuation of the effector’s (DEVDase) activity,

and the subsequent failure to properly exclude the cellular

content [98, 100]. Although the exact mechanism by which

cytochrome C-d regulates caspase activation in spermatids

is still obscure, it appears that it is not related to its function

in ATP production (L. Ravid-Lustig. and E. A., unpub-

lished results). On the other hand, hypomorphic allelic

combinations of either ark or dronc mutants affected the

proper removal of the spermatids cytoplasm [98, 100].

Similar phenotypes were also reported for spermatids

expressing RNAi against ark and dominant-negative

Dronc, and mutants for drice, dredd and dfadd, the

Drosophila orthologues of caspase-3, -8 and Fadd, an

adaptor that mediates recruitment of apical caspases to the

DISC [101, 102]. Recently, we have reported a role of the

ubiquitin pathway for caspase activation in this system. In

a screen for mutants that abrogate effector caspase acti-

vation in spermatids, mutations were isolated in cullin-3

and klhl10, two components of an E3 ubiquitin ligase

complex [103]. It is noteworthy that several other ubiquitin

pathway proteins were also found to play important roles

for caspase regulation, indicating that the control of cell

survival and death relies extensively on targeted degrada-

tion by the ubiquitin–proteasome pathway [43].

Prior to their release to the lumen of the seminiferous

tubules of the testis, inter-connected mammalian sperma-

tids are also individualized and shed off excess cytoplasm.

Ultra structural studies reported the presence of granules

(basophilic bodies susceptible to staining by base dyes),
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vacuolation, and a high electron density due to an increased

condensation of organelles at both the distal cytoplasm of

maturing spermatids and at ‘‘residual bodies’’ (anatomical

equivalents of Drosophila ‘‘waste bags’’) [62, 104, 105].

These cellular features are reminiscent of apoptosis [11] and

were later both confirmed and expanded in a study using a

rat model. Membranes of isolated ‘‘residual bodies’’ were

labeled with annexin V [106], a Ca2?-dependent

phospholipid-binding protein with high affinity for the

phosphatidylserine exposed on the surface of apoptotic cells

[107]. In addition, expression levels of c-jun and p53 which

also exert apoptosis-related regulatory roles, gradually

increased in the caudal cytoplasmic compartment of

maturing spermatids, peaking in ‘‘residual bodies’’ [106].

As in Drosophila spermatogenesis, caspase-3 is also acti-

vated during the late stages of mammalian spermatogenesis

(Fig. 2g; H. Kissel, E. A., and H. Steller, unpublished

results) [108]. Furthermore, targeted deletion of the mouse

Sept4 genomic locus, which knocked out the pro-apoptotic

protein ARTS, resulted in defects in the elimination of

residual cytoplasm during sperm maturation [108]. Inter-

estingly, as in Drosophila, mammalian KLHL10 and Cul-

lin-3 can also interact in vitro and Cullin-3 is highly

expressed during late murine spermatogenesis [109]. In

addition, KLHL10 is exclusively expressed in develop-

mentally advanced murine spermatids. Mice carrying a null

KLHL10 allele are infertile due to defects during late

spermatid maturation [110], and a high frequency of

mutations in KLHL10 was reported in infertile men dis-

playing low sperm count [111]. These data indicate that a

similar E3 complex may function in late mammalian sper-

matogenesis and that defects in the mammalian KLHL10

mutant spermatids may be attributed to a lack of effector

caspase activity, which might affect proper spermatid

individualization and removal of the cytoplasmic content.

Local degeneration during dendrite pruning

in the Drosophila sensory neuron

Pruning is a process often used to selectively eliminate

excessive neuronal projections (i.e. axons, dendrites, and

synaptic connections), without the death of parent neurons.

This process of limited cellular degeneration is important

for normal development of the nervous system as well as in

response to injury or disease in the adult [112]. During

larval-adult transformation in Drosophila, several types of

neurons undergo pruning, including axon pruning in the

CNS mushroom body c neurons and pruning in class IV

dendritic arborization (C4da) sensory neurons of the PNS

[112–114]. Interestingly, although these two systems share

some morphological and molecular characteristics, they

also exhibit several distinct molecular features. For

example, efficient axon pruning in the c neurons involves

engulfment of the degenerating axons by glial cells in a

mechanism that requires Draper, the Drosophila ortho-

logue of the ced-1 gene from C. elegans, which is essential

for the clearance of apoptotic cells [115–118]. In accor-

dance phagocytic blood cells can engulf neuronal debris

and may assist efficient severing of branches that show

signs of destabilization during dendrite pruning of the

sensory neurons, and flies mutant for draper displayed

strong suppression of branch removal after the initial

severing from the cell body [119, 120].

Despite these anatomical similarities between axon and

dendritic pruning, recent data suggest that dendritic prun-

ing in C4da, but not axon pruning in c neurons, share

mechanisms similar to apoptosis. These conclusions are

mainly based on a variety of independent experiments

aiming to block axon or dendritic pruning in the respective

neurons. In c neurons, for example, axon pruning could not

be blocked in flies carrying the H99 deletion which covers

the three major apoptotic activators Reaper, Hid and Grim

[121]. Likewise, mutations in either the initiator caspase

Dronc [122], the apical caspase Dredd, or the effector

caspase Drice (O. Schuldiner and L. Luo, personal com-

munication), all failed to attenuate this type of pruning. In

addition, overexpression in c neurons of the caspase

inhibitor proteins P35 or Diap1 had no effect on axon

pruning [117, 121], as well as no staining with the anti-

cleaved caspase-3 antibody was detected [117]. On the

other hand, dendritic pruning in C4da sensory neurons

utilizes key components of the apoptotic machinery,

including caspases [120, 122]. Localized activation of

Dronc in the degeneration dendrites appear to be an

important step in the execution of pruning in this system, as

loss of function mosaic clones for dronc, flies homozygous

for a dronc null allele, or expression of dominant-negative

forms of Dronc, all suppressed this process. Similarly,

inhibition of Dronc activity by overexpression of Diap1 or

in flies that carry a gain-of-function diap1 allele, or in

mutants heterozygote for the adapter protein Ark (Apaf-1),

all caused suppression of branch removal [120, 122]. Dronc

activity, marked by staining with the anti-cleaved caspase-3

antibody [122], as well as caspase-3-like activity detected

in vivo by using an artificial caspase-3 substrate (Fig. 2d)

[120], were both restricted to the degenerating dendrites.

Whereas Jan and colleagues could not detect any effect on

dendrite pruning upon expression of the viral effector

caspase inhibitor p35 [123], Truman and colleagues

reported that p35 expression significantly halts the removal

of dendritic branches [120]. Moreover, while the former

work suggests that local activation of caspases destabilizes

proximal dendritic branches and severs them from the

soma, the latter supports a role for caspases only after the

severing event [120]. This discrepancy is not only a matter

of semantics, because if caspases are ‘‘dormant’’ before

Apoptosis (2009) 14:980–995 985
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detachment of dendrites from the cell body and only

acquire a full-blown activity after the occurrence of initial

severing, it may explain how dendrite-restricted caspase

activity does not affect the soma.

In summary, whether the apoptotic machinery is com-

pletely irrelevant during axon pruning in c neurons is yet to

be fully determined. The failure to observe an effect in

mutants for several key apoptotic components and by anal-

ogy to the model of distal axon degeneration after transection

where active caspases appear not to play a role [124] suggest

that different mechanisms may govern pruning in these two

systems. Finally, it is possible that pruning of c neurons

dendrites differs from pruning of their axons and thus may

require apoptotic factors similar to sensory neurons.

The specialized form of megakaryocyte cell death

that produces functional platelets

Blood platelets, or thrombocytes, are functional anucleated

cell fragments derived from long and thin cytoplasmic

extensions (proplatelets) of the progenitor megakaryocyte

cells and play a key role in blood clotting [125, 126]. The idea

that the apoptotic machinery might be involved in platelet

formation first came from genetic studies of two members of

the Bcl-2 family proteins during hematopoiesis in mice. In

these studies, transgenic mice which ubiquitiously expressed

the anti-apoptotic human bcl-2 gene throughout their

hematopoietic system or mice deficient for the pro-apoptotic

gene bim both showed a reduction of about 50% in the

number of platelets in their blood [127, 128]. Another work

suggested that the terminal stage of megakaryocytopoeisis,

during which platelets are produced represents a specialized

form of apoptosis, as pro-apoptotic stimuli such as nitric

oxide [129] or Fas ligation [130] triggered increased release

of platelets from cultured megakaryocyte cells. In addition,

after the release of platelets, the denuded megakaryocytes

are subsequently engulfed by macrophages [131] and it was

suggested that these so-called senescent megakaryocytes

correspond to apoptotic cells [132].

Using a primary cell culture model of differentiating

megakaryocytes as their experimental system, Debili and

colleagues tested a possible involvement of apoptotic

caspases in the process of proplatelet formation [133]. This

work first showed that caspase peptide inhibitors, but not

calpain inhibitor, could lead to an almost complete inhi-

bition of proplatelet formation when added at a stage prior

to the production of these cytoplasmic extensions. At the

stage of platelet-shedding megakaryocytes, activation of

caspase-9 and -3, as well as cleaved forms of the effector

caspase substrates gelsolin and PARP, were detected.

Interestingly, whereas a granular pattern of cleaved caspase-

3 staining was detected during proplatelet formation and

the cells preserved their DNA integrity, megakaryocytes that

were induced to undergo apoptosis displayed a diffuse

cleaved caspase-3 expression and had TUNEL-positive

nuclei, suggesting that, at least in this system, compart-

mentalized activation of caspase-3 may be a major factor in

the ability of these cells to deal with the danger of exces-

sive caspase activity and cell death. Finally, cytochrome C

release to the cytosol accompanied proplatelet formation,

while overexpression of the bcl-2 gene strongly attenuated

this process, implying that the mitochondrial pathway may

be required for caspase activation in this system. Taken

together, these studies suggest that apoptosis-related

mechanisms may also function during platelets formation

in vivo.

Roles of apoptotic caspases during non-degenerative

processes

In the remaining sections, we discuss non-apoptotic roles

of caspases in different cellular frameworks that do not

exhibit compartmentalized degeneration. These less intui-

tive paradigms imply that the broad affinity of caspases

towards hundreds of substrates must be modified, such that

they could recognize and cleave only a few specific targets.

In the last paragraph, we discuss mainly hypothetical

mechanisms for how the activity of caspases can be con-

trolled during these processes.

Neural precursor development in Drosophila

The appearance of an extra few external sensory organs

(macrochaetae) on the notum of flies mutant for Apaf-1,

caspase-9, or cytochrome C orthologues (Ark, Dronc, or

cytochrome C-d, respectively), implies that the apoptotic

machinery might play a role in the formation of the sensory

organ precursor (SOP) cells in Drosophila [134–137].

However, it was suggested that caspase activity in this

system is required for a non-apoptotic process, as transient

inhibition of caspase activity by overexpression of the viral

effector caspase inhibitor p35 at a stage prior to specifi-

cation of SOP cells led to the appearance of extra macro-

chaetae, and caspase-3-like activity was detected only at

this early stage [138]. Therefore, as opposed to the above

mentioned caspase-dependent cell terminal differentiation

processes, in this system caspase activity prevents specifi-

cation and differentiation of SOP cells. As previously

reported [139], a deficiency screen for large chromosomal

deletions that dominantly modify the number of macro-

chaetae in dronc mutants demonstrated the involvement of

the Wingless (Wnt) signaling pathway in this process,

including a fly-specific inactive orthologue (Sgg46) of the

kinase GSK3B, an antagonist of the Wnt pathway [138].

Sgg46 was cleaved and activated following expression of
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the effector and initiator caspases Drice or Dronc in

Drosophila S2 cells, and sgg mutants induced extra mac-

rochaetae and SOP cells [138]. Although it is still remained

to be determined whether Sgg46 is indeed cleaved and

activated within SOP cells, this study suggests that casp-

ases may normally function in a non-apoptotic mode to

inhibit the Wnt pathway during SOP cell specification. This

idea was further fortified in a subsequent report by the

same group [140]. In this work, knockdown of the

Drosophila IKK-related kinase gene (DmIKKe) in the

notum resulted in suppression of caspase-3-like activity in

the proneural clusters (SOP primordial cells), extra SOP

cells, and appearance of additional macrochaetae [140].

Significantly, although mutations in DmIKKe were origi-

nally identified as dominant suppressors of apoptosis

induced by Reaper expression in the adult eye, subsequent

genetic and cell culture studies showed that DmIKKe can

phosphorylate the potent caspase inhibitor Diap1, leading

to its proteasome-mediated degradation independently of

the Reaper family proteins. Furthermore, no significant

changes in embryonic cell death were detected in DmIKKe
mutants and knockdown of DmIKKe in wing discs did not

suppress naturally occurring cell death despite the marked

increase in Diap1 levels [140]. Therefore, unlike Diap1

inhibition by the Reaper family proteins which leads to cell

death, DmIKKe-dependent Diap1 inhibition does not cause

apoptosis. Whether DmIKKe is a mediator of caspase

activation during other non-apoptotic processes remains to

be determined. The findings that DmIKKe can also act as a

negative regulator of F-actin assembly during other cas-

pase-dependent non-apoptotic processes ([141]; see also in

the next section) suggest that this possibility shall be a

good avenue to take. Moreover, the fact that the mamma-

lian DmIKKe orthologue NAK can similarly mediate

phosphorylation-dependent degradation of the apoptosis

inhibitor XIAP, raises the attractive hypothesis that NAK

may be involved in regulation of caspase-dependent non-

apoptotic processes in mammals [140].

Caspase-mediated F-actin dynamics during cellular

morphogenesis and cell migration in Drosophila

The continuous turn over of F-actin filaments by concur-

rent growth and shortening at the opposite ends is essential

for many of the actin cytoskeleton functions [142–144].

Extensive reorganization of the cytoskeleton is a major

feature of apoptosis [145]. Importantly, caspase-3 can

indirectly depolymerize actin filaments by cleaving Gel-

solin and activating its actin-severing activity [146]. Three

studies using different Drosophila cellular systems strongly

support a critical role of the initiator caspase Dronc, but not

of the effector caspase in the regulation of actin dynamics

during cellular morphogenesis and cell motility, albeit the

molecular mechanisms by which this caspase regulates

F-actin dynamics are completely obscure. Branching of the

antennal aristae was originally regarded as a cell death

associated process, since flies carrying the classical weak

allele (th1) of the thread locus which encodes the caspase

inhibitor Diap1 produced a branchless arista [147, 148].

Consistent with this idea, mutations in the pro-apoptotic

gene hid led to numerous extra branches and a weak allele

of the apoptosome adaptor Ark partially suppressed the th1

branchless phenotype [148]. However, a failure to detect

any effect following ectopic expression of the caspase

inhibitor gene p35 and the finding that in th1 antennal disc

cleaved caspase-3 staining is much more widespread than

TUNEL labeling in the aristal progenitor cluster [148] both

implied that caspase activity in this system may not lead to

cell death. Indeed, a more recent study showed that

mutations in DmIKKe, a Diap1 inhibitor during the non-

apoptotic process of SOP cell specification (see also pre-

vious paragraph), caused aberrantly branched morphology

of tracheal terminal cells, bristles, and arista laterals, which

require accurate F-actin assembly for their polarized

elongation [141]. Consistent with the previous study on the

arista [148], these phenotypes were sensitive to a change in

the dosage of Diap1 and Dronc or its activator Ark, while

exhibiting no effect upon inhibition of effector caspases by

p35 [141]. Since there was no apparent change in cell

viability, these studies strongly support a role of DmIKKe
in the activation of the initiator caspase via negative reg-

ulation of Diap1, which in turn, through an as yet unknown

effector caspase-independent mechanism, leads to turnover

of F-actin and subsequent polarized elongation during cell

morphogenesis. Therefore, it appears that DmIKKe exerts

at least two non-apoptotic functions during macrochaetae

development; an early role during specification of SOP

cells which requires the effector caspase [140] and a later

role in dictating the fidelity of polarized elongation,

allowing the formation of smooth macrochaetae [141].

Border cell migration in the Drosophila ovary is another

example of a role for the initiator caspase in regulation of

F-actin dynamics and cell migration. In the course of

exploring the role of the small GTPase Rac during border cell

migration in vivo, Geisbrecht and Montell have found that

overexpression of Actin5C or Diap1 can suppress the border

cell migration defect caused by dominant-negative Rac

[149]. Interestingly, this migration defect of Rac mutant

border cells appeared to be primarily due to effects on actin,

as overexpression of Profilin, the protein required for

maintenance of a pool of active monomeric actin, rescued

this migration defect nearly as well as wild-type Rac. Fur-

thermore, diap1 mutant follicle epithelial cells displayed a

reduction in F-actin and border cells failed to migrate. In

addition, mutant alleles of both profilin and diap1 showed

strong dosage-sensitive genetic interaction and Rac, Profilin,
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and Diap1 could form a complex in vitro. Finally, whereas

weak ark mutants or overexpression of dominant-negative

forms of Dronc rescued the migration defects in Rac mutant

border-cells, no TUNEL-positive staining was detected in

these cells and overexpression of p35 did not rescue their

migration defect [149]. Therefore, although the underlying

molecular mechanisms of F-actin regulation by Dronc are

yet unknown, the authors hypothesized that Dronc may

cleave one or more proteins required for Rac-mediated cell

motility. Rac itself was shown to be cleaved and inactivated

by caspase-3 in lymphocytes [150]. Collectively, these

studies suggest antagonistic regulation of the Diap1-Dronc-

dependent/effector caspase-independent pathway by Rac

and DmIKKe, which in turn seem to result in opposite

dynamics of F-actin. It is attractive to speculate that Rac

might protect Diap1 against DmIKKe-mediated phosphor-

ylation and degradation. It will be interesting to examine

whether Rac is involved in regulation of F-actin-mediated

cellular morphogenesis and if DmIKKe is required for proper

dynamics of F-actin during border cell migration.

The role of caspases in the remodeling of the cyto-

skeleton is consistent with the major morphological chan-

ges constituting the hallmark of apoptosis [11]. Therefore,

in addition to their roles in F-actin dynamics, caspases are

likely to affect other components of the cytoskeleton dur-

ing non-apoptotic processes. The effect of caspases on the

morphology of PC12 cells, an in vitro model for neuronal

differentiation, provides such an example [151]. Following

plating on poly-D-Lysine/laminin-coated wells, PC12 cells

normally stop growing as clumped colonies and adhere and

disperse as a monolayer over time. Rohn et al. observed a

transient activation of caspase-3 already at 1 h following

plating with no effect on cell death, while upon treatment

with a caspase peptide inhibitor or antisense caspase-3

oligonucleotides, these cells remained rounded in appear-

ance and failed to disperse properly. Interestingly, the

microtubule-associated protein that stabilizes the neuronal

cytoskeleton tau was shown to be cleaved by caspase-3

following plating of PC12 cells [151]. These results sug-

gest that transient caspase activity in these cells may allow

for the proper disassembly of the cytoskeleton that is

required for cells to disperse to their final destinations.

However, the relevance of these findings to cytoskeletal

remodeling-associated processes in vivo remains unclear.

Caspase-mediated differentiation of monocytes

to macrophages

The idea that vertebrate differentiation of monocytes into

macrophages involves a non-apoptotic function of caspases

came first from a study of a human leukemia cell line model

for terminal monocytic differentiation. Treatment of these

cells with phorbol ester led to the appearance of a mature

differentiated phenotype which was associated with some

characteristics of apoptosis, including cytochrome C release

and caspase-3 activation [152]. Along these same lines,

treatment of similar cells with tumor necrosis factor (TNF)–

related apoptosis-inducing ligand (TRAIL) which can

induce DISC formation and apoptosis [153], resulted in rapid

caspase-dependent cytotoxicity associated with progressive

maturation of the surviving cells along the monocytic line-

age; and cytokine and TRAIL-treated primary normal

hemopoietic progenitor cells displayed increased number of

mature monocytes and macrophages [154]. In another study

where the involvement of caspases was tested directly, active

forms of caspase-3 and -9 were found to be associated with

differentiation of normal human peripheral blood monocytes

into macrophages following cytokine induction [155].

Furthermore, differentiation of a leukemia cell line into

macrophages was inhibited upon treatment with either a pan-

caspase peptide inhibitor, expression of the viral effector

caspase inhibitor p35, or overexpression of the anti-apop-

totic human mitochondrial protein Bcl-2. Caspase activation

in these cells was accompanied by cytochrome C release and

cleavage of the caspase-3 substrate Acinus, but not oligo-

nucleosomal DNA fragmentation, PARP cleavage, nor

annexin V labeling, suggesting that the mitochondrial path-

way is involved in caspase activation during this non-apop-

totic differentiation process [155]. These model systems for

caspase-mediated monocyte-to-macrophage differentiation

can produce functional macrophages, as was demonstrated

by their ability to phagocytose live bacteria [156]. Moreover,

in vivo evidence for the requirement of caspases in this

system is also available, as conditional targeted deletion of

caspase-8 in the myelomonocytic lineage led to arrest of

differentiation into macrophages and to cell death [157].

Finally, proteomic analysis using the leukemia cell line

system revealed several proteins that are potentially cleaved

by caspases in monocytes undergoing differentiation into

macrophages, including proteins involved in cytoskeletal

regulation, such as a-tubulin, vinculin, b actin, and PAK2

[158]. Significantly the p21-activated kinase 2 (PAK2) was

implicated in apoptosis and can be activated through binding

to the monomeric G protein Rac [159] or following caspase-

3-mediated removal of its autoinhibitory domain [160].

These findings raise the possibility that similar to Rac-

mediated actin rearrangement during border cell migration

in Drosophila, caspase activity during monocyte-to-macro-

phage differentiation may also function in the organization

of the cytoskeleton.

Caspase-mediated differentiation of stem cells

Stem cells are defined as cells that, at the single-cell level, are

capable of self-renewal and differentiation to specialized cell

types [161]. Several studies using different tissue-specific
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stem cells provide evidence for a role of caspase-3 in

mediating stem cell differentiation. Mice deficient for

caspase-3 [162, 163] displayed attenuated osteogenic dif-

ferentiation of bone marrow stromal stem cells [164],

attenuated neuronal differentiation of primary derived

neuronal stem cells [165], accelerated proliferation and

retarded differentiation of adult hematopoietic stem cells

[166], and marked differentiation defects in caspase-3

knockout embryonic stem cells [167]. Caspase-3 activity in

all of these cells was examined either directly or indirectly

using caspase peptide inhibitors. At least in embryonic

stem cells, caspase activation may depend on the mito-

chondrial pathway, as enforced Bcl-2 expression in mouse

embryonic stem cells was sufficient for their self-renewal

in serum- and feeder-free conditions when supplemented

with the leukemia inhibitory factor (LIF) [168]. Whereas

the molecular mechanisms by which caspase-3 regulates

differentiation of these cells are still obscure, altered

expression of several components in relevant signaling

pathways was reported [164–166]. Interestingly, induced

expression of caspase-3 stimulated embryonic stem cell

differentiation which coincided with a reduction in the

levels of Nanog, one of the small core set of transcription

factors which work together to maintain the pluripotent

state of these cells. Moreover, Nanog was reported to be a

direct target of caspase-3 (and perhaps also caspase-9) both

in vitro and in vivo, and forced expression of a caspase

cleavage-resistant Nanog form in embryonic stem cells

readily promoted self-renewal [167]. Further studies are

required in order to determine whether caspases-3 exerts

common molecular mechanisms to direct differentiation of

different types of stem cells or that this protease may

cleave distinct protein substrates in each stem cell type.

Caspase-3 in learning and memory

Memory relates to a diverse set of cognitive capacities by

which an organism retains information and reconstructs

past experiences. A recent study on song-specific habitua-

tion in adult zebra finches provides a direct evidence for

caspase-3 activation by animal training [169]. Following

exposure to tape-recorded birdsong, the concentration of

the active form of caspase-3 sites was shown to increase

within minutes in dendritic spines within the auditory

forebrain of these birds. This rapid activation of caspase-3

was probably not due to de novo synthesis of this protease,

but rather to a relief of inhibition of the active caspase form

by the inhibitor of apoptosis protein XIAP. Perhaps the

most informative piece of data came from auditory fore-

brain infusion studies using a cell-permeable caspase-3

inhibitor; taking advantage of a molecular marker assay for

habituation, birds from the caspase-3 inhibition group but

not wild-type controls ‘‘forgot’’ a song, which they

repeatedly heard a day earlier and responded as though the

song was novel to them. Although nothing is known about

the mechanism by which caspase-3 affects learning and

memory in these birds, it is possible that it may involve

cleavage of AMPA receptors and thereby reduce gluta-

matergic responses and prolong spike habituation [170]. It

remains to be seen, however, whether this possibility holds

true in vivo and whether there are other affected pathways.

Concluding remarks

The weight of evidence presented in this review counters the

dogma that cells expressing active apoptotic caspases are

doomed to die but leaves unexplained the mechanisms that

prevent excessive caspase activity and unwanted killing of

these cells. The ability of cells to evade apoptotic cell death is

an essential ‘‘hallmark of cancer’’. Furthermore because of

their aberrant behaviors, cancer cells are believed to con-

stantly express active caspases, implying that cancer cells

must have developed a way to counteract this ‘‘killing’’

activity [171]. Indeed, aberrant expression and/or function of

the inhibitor of apoptosis proteins (IAPs) are found in many

human cancers and have been implied in resistance to current

treatment approaches [172, 173]. Likewise, IAPs may also

play a role in attenuation of caspase activity during non-

apoptotic processes. In Drosophila, mutations in the giant

IAP dbruce lead to male sterility due to spermatid individ-

ualization defects [98]. Although it still remains to be dem-

onstrated, the phenotype of degenerate and hypercondensed

nuclei in these mutant spermatids suggests that dBruce might

protect spermatid nuclei against excessive caspase activity.

The high expression level of XIAP and its ability to bind to

caspase-3 in zebra finch auditory forebrain extracts also

suggest a similar role of this inhibitor in restraining caspase

activity in this cellular system [169]. Another mechanism

which can limit the exposure time of these cells to caspase

activity appears to involve a transient activation of caspases

as opposed to their full blown activity during conventional

apoptosis. Indeed, transient caspase activation has been

observed during differentiation of erythrocytes [91], lens

fiber cells [65], and PC12 cells [151]. Along the same lines,

caspases may possess different affinities towards different

substrates [174], hence, transient or low level of caspase

activity may result in cleavage of only a few substrates that

exhibit the highest affinity. Notably, some caspase substrates

change their functions from anti- to pro-apoptotic as caspase

activity increases, while others turn anti-apoptotic by

cleavage at a low level of caspase activity and further

cleavage leads to a pro-apoptotic conversion [175, 176].

Localized expression of active caspases may be a mechanism

by which caspase activity is confined to specific subcellular

compartments. Consistent with this idea, granular labeling of
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cleaved caspase-3 was detected in megakaryocytes during

platelet formation, whereas megakaryocytes that were

induced to die displayed a more uniform diffused staining

[133]. Furthermore, a recent work demonstrated marked

differences in spatial expression of active caspase-8 fol-

lowing T-cell activation versus cell death [177]. Following

T-cell antigen receptor (TCR) signaling, caspase-8 is acti-

vated in aggregates within membrane lipid rafts (Fig. 2e)

[177], probably mediating proliferation of these cells [178,

179]. In contrast, apoptosis induction by Fas stimulation of T

cells resulted in a much more profound activation of caspase-

8 that was exclusively cytosolic (Fig. 2f) [177]. This elegant

experiment suggests that active caspase-8 is sequestered in

different cellular compartments following activation for

proliferation versus apoptosis, and that this spatial difference

may reflect altered access to caspase-8 substrates during the

non-apoptotic process. Other roles of caspases in the

induction of compensatory proliferation in Drosophila were

reported [48, 180–184]. It will be interesting to determine

whether active caspases display similar compartmentalized

distribution during these processes. Finally, post-transla-

tional modifications of caspases and/or binding to modulat-

ing proteins may alter their affinity towards different

substrates, which may result in modified forms of caspases

that recognize specific subset of substrates [185–188]. The

emergence of accurate tools for detection of caspase activity

in vivo will help to shed light on the exact mechanisms by

which caspases exert non-apoptotic functions.
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