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Abstract

Lipidia is a new simulation system that is related to the “Lipid
World” scenario for the origin of life. Lipidia allows for con-
ducting experiments with a population of assemblies contain-
ing lipid-like molecules on a two dimensional grid. The dy-
namics of the assemblies is modelled using the Graded Au-
tocatalysis Replication Domain (GARD) model. New exper-
iments using a finite environment model with GARD were
conducted with Lipidia. The experiments show that more
self-replicating assembly species appear when using a model
of finite environment than when using a model of infinite en-
vironment. In many species the number of individuals in-
creases as well.

Introduction
The “RNA World” is possibly today’s most popular theory
for the origins of life (Gilbert, 1986; Joyce, 2002). Because
RNA molecules can act as catalysts in addition to acting as
templates, it is hypothesized they might have been able to
do both: to store alphabet-based genetic informationand to
catalyze their own creation. Life, according to this theory,
began when certain RNA molecules achieved the capability
to replicate themselves. This scenario, despite its elegance,
suffers from difficulties.

In an attempt to come up with a probable scenario, hav-
ing observed that no known bio-molecule is capable of self
replication in its naked form, it has been suggested that
self replication might not have been achieved by a single
molecule, but rather by a molecular ensemble (Kauffman,
1995). This work is based on “The Lipid World” sce-
nario (Segre et al., 2001) which follows that line of thought.
The scenario assumes that self-replication was initially
achieved by non-covalent assemblies of lipid-like molecules
that contained mutually catalytic sets (Segre et al., 2000).
RNA according to this scenario, while possibly playing an
important role, came later.

Why Lipids?
Lipid-like amphiphiles (molecules that have one end that
“loves” water, and another end that “hates” water) are as-
sumed to have been present in the primordial soup (Deamer,

1997; Luisi et al., 1999). They are known to be capable
of self-organizing into higher-level structures (e.g. micelles
and vesicles) (Luisi et al., 1999; Gompper and Schick, 1994;
Tanford, 1978). Lipid vesicles have been “shown to be ca-
pable of enhancing the rates at which precursors are con-
verted into vesicle-forming amphiphiles (Bachmann et al.,
1992). In some settings, this leads to an auto-catalytic ex-
pansion of the molecular assemblies, a process resembling
cell growth” (Segre and Lancet, 2000). Random fission pro-
cess can cause occasional divisions. Altogether, we have
assemblies of molecules that demonstrate a primitive form
of growth and division, in a process that is, although noisy,
capable of self-replication with a reasonable fidelity (Segre
et al., 2000; Segre and Lancet, 2000). The inside of sim-
iles of such assemblies, namely lipid vesicles, is shielded
from the surrounding environment and thus hypothesized to
be capable of offering “hospitable conditions” under which
RNA replication can be more likely. Once some coupling is
formed between these two replication systems, an early cell
could come into existence (Szostak et al., 2001).

Scope of Current Work

We use theGraded Autocatalysis Replication Domain
(GARD) model (Shenhav et al., 2004; Segre et al., 1998)
to quantitatively model and simulate the developmental pro-
cess of non-covalent assemblies of lipid-like molecules. Pre-
vious studies using the GARD model have mostly examined
such assemblies in a one-at-a-time fashion. The behavior
of assembly populations has been largely unexplored (Segre
et al., 2000). In this work we expand the model to apopula-
tion of assemblies and obtain quantitative and qualitative re-
sults regarding its behavior. Also, previous studies assumed
idealization of an infinite environment where the assembly’s
effect on the environment is negligible and “food” molecules
are in infinite supply. In this work we introduce a finite
environment to the model, which allows cross-interactions
between assemblies via the environment. We compare the
effect of finite environment vs. infinite environment.



Lipidia
This section introduces Lipidia’s terminology and describes
its objects and interactions.

Structure
Lipidia is based on a two dimensional interactiongrid, as
with cellular automata. Each square on the grid is called
a grid-location (or location for short). For each loca-
tion there is a definedenvironmentcontaining a variety of
molecules. Each location may contain zero or moreassem-
bliesof molecules. The location’s environment is common
for all assemblies contained within it. Molecules from the
environment mayjoin an assembly, and molecules from the
assemblies mayleave their assembly back to the environ-
ment. “Matter” on the grid is therefore preserved — no mat-
ter is ever lost or created1.

Each grid location has eight neighboring locations, except
the locations on the grid’s edge, which border a surround-
ing gutter. The gutter is a special location that takes care
of objects falling-off the grid. A few gutter policies can be
applied. A common policy is to insert objects falling from
one edge to the opposite edge, hence turning the grid into a
toroid.

Initial Configuration
The environment is seeded with an arbitrary number of
molecules, ofNG different types. We usually start with all
grid locations empty of assemblies, and their environments
uniformly seeded with a constant numbere0 of molecules
for each of theNG types.

Assembly Birth
Assemblies spontaneously come to existence at some con-
stant low rate. We call this appearanceassembly birth, and
it can happen at any grid location. Ideally, birth rate should
depend on the numbers and types of molecules available at
each location. It is reasonable to assume that the rate of
assembly creation will degrade as the environment material
runs out. However, for simplicity we simulate a constant
birth rate.

Assembly Growth
As the simulation progresses, molecules from the environ-
ment may join assemblies, and molecules from the assem-
blies may leave them and return back to the environment.
Join and leave reactions establish the assembly growth; how-
ever, growth is also affected indirectly by other assemblies
via the shared environment. The dynamics of assembly
growth are governed by the GARD model (Segre et al.,
2000) as follows.

The system contains a set ofNG types of molecules,
and mutual catalysis can occur between any molecule pair.

1The finite environment model is replaceable with an infinite
environment model of fixed concentrations.

The catalytic rate enhancement exerted by molecule type
j on molecule typei is denoted by a matrix elementβi j .
Values forβ matrix are assigned in accordance with pre-
viously developed Receptor Affinity Distribution (RAD)
model (Lancet et al., 1993). The basal reaction rateskf and
kb (forward and backward) respectively specify spontaneous
join and leave rates.

An assemblys is represented by anNG-dimensional
vector, where each componentsi denotes the number of
molecules of thei-th type in the assembly. An environment
e is represented similarly.

Join Reaction The join rateJi of molecule typei in the
environmenteof an assemblys is given by:

Ji = kf ei(1+
NG∑

j=1

βi j sj) (1)

Therefore,Ji increases the higher the count,ei , of molecules
of type i in the environment. The spontaneous rate,kf , is
enhanced by a catalysis generated by molecules within the
assembly: each molecule of typej contributesβi j for that
rate enhancement. Hence equation 1 above.

Leave Reaction The leave rateLi of molecule typei from
assemblys to its environmente is given by:

Li = kbsi(1+
NG∑

j=1

βi j sj −βii ) (2)

Therefore,Li increases the higher the count,si , of molecules
of type i within the assembly. The spontaneous rate ,kb, is
enhanced by a catalysis generated by molecules within the
assembly: each molecule of typej contributesβi j for that
rate enhancement, except of one molecule of typei that can
not catalyze its own leave. Hence equation 2 above.

Assembly Division (Split)
When the number of molecules in an assembly reaches a
certain value, denoted byN0, the assembly is divided into
two daughter assemblies. When this division takes place,
every molecule in the original assembly is randomly joined
to one of the daughter assemblies. The exact structure of the
assembly is not modelled.

Assembly Diffusion
Each assembly diffuses at some low rate from its current
location to a neighboring location on the grid. It may as well
diffuse into the gutter and handled according to the gutter
policy.

Environment Diffusion
As a result of diffusion, environments of two neighboring
locations mix some percentage of their molecules at some
low rate. Such diffusion may also occur into the gutter, then
to be handled according to the gutter policy.



Population Control and Assembly Death

An assembly may divide into two daughter assemblies,
which may divide further. In time we obtain an exponen-
tial explosion of assemblies. Following are means that limit
population growth, some of which involve assemblydeath,
whereby an assembly disassembles and return its molecules
back to the environment.

Natural Death An assembly undergoes spontaneous de-
composition following a certain amount of time after its cre-
ation. This sort of death is natural to the model.

Finite Environment A finite environment provides a nat-
ural means to limit population growth. It puts a bound on
the total number of molecules, and therefore on the number
of assemblies that can be created.

The Reaper The above means are part of the model and
therefore “natural”. However, to avoid excessive computa-
tion we also need an “artificial” means. The reaper keeps the
global assembly population on the grid below some bound.
When the number of assemblies exceeds the bound, the
reaper selects an assembly at random and “kills” it.

Scheduling of Random Events

All simulation reactions and behaviors mentioned above can
be collectively calledevents. Many of these events are
stochastic and occur at defined rates. The simulation sched-
ules the events in a stochastic but fair method, which reflects
their rates. The method is best visualized as a giant roulette
wheel, where each event “owns” one roulette slot. Unlike
true roulette, slots may vary in size making them more or
less likely to occur. Thus, the size of the slot corresponds to
the rate of the owning event.

Upon every cycle, the simulation engine gives the roulette
wheel a spin to choose the next event. The event is activated
and the state of the system is modified, possibly changing
the rates of other events, whereby their corresponding slots
become wider or narrower. The algorithm implementing the
roulette wheel requiresO(log(n)) time andO(n) space forn
events.

Attractors

This section discusses the important concept ofattractorsin
the context of Lipidia; how they are defined and how to find
them.

Composition Stability

Thenormalized composition(or compositionfor short) of an
assemblys is given by:

s̃= s/‖s‖ , (3)

where‖s‖ is the norm of the vectors.

Due to mutual catalysis, we expect to find compositions
that arestableover time. We say that a composition is sta-
ble if it remainssimilar along splits. This stability involves
a quasi-stationary state, and should be distinguished from
equilibrium-type stability. Thus, even though during assem-
bly growth molecules can join or leave, when it splits (ac-
tually, just before it does) its composition is similar to its
parent’s composition (at the time of split).

Composition Similarity and Self Replication
We estimate the similarity of two assembliessp andsq by
using the scalar product of their compositions:

H(sp,sq) = s̃p · s̃q (4)

therefore,H = 1 denotes perfect similarity andH = 0 de-
notes perfect dissimilarity. Note thatH only measures “how
far” compositionsp is from sq, but does not measure “how
hard” it is, in terms of reactions, to get from compositionsp

to compositionsq. When a parent assembly splits into two
daughter assemblies that grow to have a similar composition
as the parent, we say that the parent replicated.

Trajectories in Composition Space
A composition we measure at any time point, and specif-
ically at the time of assembly split can be thought of as a
point in the composition space, which includes all possible
compositions. Each of the assembly’s ancestors might have
visited another point in the composition space. An assem-
bly’s lineage can be thought of as thetrajectoryalong these
points.

Attractors and Basins of Attraction
Each point in the composition space is theoretically reach-
able. However, due to mutual catalysis some points are more
likely then others. The composition space may be perceived
as a landscape, where low points represent compositions that
are easier to get (in terms of reactions), while high points
represent the opposite. The trajectories are therefore likely
to “fall” into lower areas. If an area has a basin shape, each
trajectory, having fallen in, will have a hard time escaping
the basin: it will tend to keep falling back into theattractor,
that is, the foot of the basin. Therefore, an assembly having
a composition within an attractor will tend to be stable.

Attractors as Assembly Species
When we observe species in nature we see that individuals of
the same species may vary from each other. However, they
seem to be “trapped” within some “cloud of variations” that
represents their species. We can therefore see our attractors
as representing assembly types (or species). Assemblies of
the same attractor will vary from each other, but will stay
“trapped” within the attractor, in the same way as above2.

2Differentiating cells in multicellular organisms have been sim-
ilarly viewed as shifting away from each other while falling into



Finding Attractors
Finding attractors in the multidimensional composition
space is not easy, and various clustering techniques can be
employed. We used a simple algorithm that is by no means
optimal. The algorithm has two components:filter andclus-
terizer. The filter checks that a new assemblysn, upon split,
is similar enough to its parent (H(sn, parent(sn)) ≥ Tsimilar)
and that such similarity has been maintained for the last
Tstable splits. If it has, the clusterizer is invoked to decide
to which clustersn belongs. The clusterizer holds a list of
assemblies,L = (s1,s2, ...,sk), where assemblysi represents
the clusteri. When invoked, the clusterizer findssm∈ L such
thatH(sn,sm) is maximal, that is,sm that is most similar to
sn. If H(sn,sm) < Tsimilar then the match is not considered
good enough and the clusterizer addssn to L, thus creating
a new cluster. The thresholdsTsimilar andTstable can be ad-
justed. The listL resulting from a simulation approximates
the attractors.

Results
This section summarizes our preliminary results and obser-
vations, obtained from a series of experiments conducted us-
ing three types of simulation settings.

Type 1: Basic GARD
To establish reference results we first configured Lipidia to
simulate basic GARD (Segre et al., 2000). It was achieved
by: creating a1× 1 grid with only one location, setting
the environment model to infinite, and setting the reaper to
maintain a population of a single assembly.

Under these conditions some attractors were discovered,
which means that self-replicating assemblies of various
species were found. This result is consistent with previous
works with GARD (Segre et al., 2000; Segre et al., 1998).
It should be noted that in these settings, a very small num-
ber of attractors, sometimes a single one, tended to dominate
and to attract most of the assemblies. Assemblies did occur
in other attractors, but rarely (Fig. 1).

Type 2: Multi GARD with infinite environment
In the second type of experiments we kept the same condi-
tions as in the first, except for setting the reaper to maintain
a constant population of 16 assemblies, instead of one. Be-
cause the environment was infinite, the 16 assemblies did not
have any effect on each other, and developed independently.
The results obtained were therefore similar to the first type
(Fig. 2). The overall simulated time extended to about1

16th
of experiments of type 1. This was expected since the un-
changed total of 15,000,000 reactions was “consumed” by
16 assemblies developing in parallel, instead of by one.

At time 50, about 30 attractors were discovered in the
type-2 experiments, while at the same time about 18 were

stable cell types, that is, attractors (Kauffman, 1995).

discovered in type-1 experiments. Not surprisingly, the “par-
allel search” done by the 16 independent assemblies found
more attractors than a single assembly did (for same amount
of time). However, for the same total number of reactions,
the type-1 experiments yielded a discovery of almost twice
as many attractors as the type-2 experiments did. This “inef-
ficiency” in type-2 experiments, in terms of number of reac-
tions, may be attributed to the independence of the 16 assem-
blies: because there is no coupling between the assemblies,
nothing prevents many of them of doing “the same”. Such
coupling was established in experiments of type 3 .

Type 3: Multi GARD with finite environment
In the third type of experiments we replaced the infinite en-
vironment model with a finite environment model. All other
settings were kept as in the second type. As Fig. 3 shows,
this change was significant.

At time 100, about 24 attractors were discovered in type-1
experiments, while at the same time about 130 were discov-
ered in type-3 experiments: more than a five-fold increase
in attractor discovery rate! The discovery was also more ef-
ficient in terms of reactions: for the same total number of
reactions, experiments of type 3 yielded the discovery of al-
most three times as many attractors as experiments of type 1
did. It should also be noted that in experiments of type 3 as-
semblies have occurred more frequently in more attractors.
Diversity has increased.

The increase of diversity is attributed to essential
molecules coming in short supply in the finite environment.
In the case of infinite environment, the composition that pro-
duces the fastest stably growing assemblies is quickly be-
coming dominant. Optimal assemblies can always be con-
structed to produce the strongest auto-catalysis possible by
picking the most suitable molecules from the given molecu-
lar repertoire. This, however, is not possible with finite envi-
ronment. Some optimal assemblies can surly be constructed
but their very construction consumes the molecules essential
for their own composition. Their count in the population is
therefore limited and new niches are becoming available for
compositions that take advantage of the remaining molecu-
lar repertoire.

Conclusions
We described Lipidia; a new simulation system that allows
to conduct experiments with a population of lipid-like as-
semblies on a two dimensional grid, using finite and infinite
environment models. We further described a series of ex-
periments performed using Lipidia. Our results show that
a finite environment produces more attractors (species), and
faster, than an infinite environment. A finite environment
allows more assemblies to occur in more attractors and in
greater numbers. Thus, diversity increases.

The results might be considered surprising. One might
think that having an infinite supply of resources, in the form
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Figure 1:Results of Lipidia simulating basic GARD. (A) The number of attractors as they are discovered in time. (B) Attractor frequencies:
the number of assemblies that occurred in each attractor throughout the entire simulation. Attractors are numbered sequentially as they are
discovered, thus each attractor number identifies an attractor and also denotes the order of discovery. The graphs show that a very small
number of attractors tend to dominate while others are rarer. Results were obtained using a grid with a single location and an infinite
environment model. Population was limited to a single assembly and the environment included 100 molecules for each of theNG types. The
first assembly was seeded. HereNG = 100,kf = 0.01,kb = 0.00001andN0 = 80. The rate enhancement factorsβi j were sampled from a log-
normal distribution with mean µ = −6and standard deviation σ = 4, in accordance with RAD model (Lancet et al., 1993). The experiment
was repeated 5 times, each simulated for 15,000,000 reactions. Each run is shown in adifferent shade.
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Figure 2: Results of Lipidia simulating 16 assemblies in an infinite environment. (A) The number of attractors as they are discovered in
time. (B) Attractor frequencies: the number of assemblies that occurred in each attractor throughout the entire simulation. The graphs show
that a single attractor tends to dominate while others are rarer. Attractor discovery rate is improved due to parallelism, but that parallelism is
wasteful in terms of reactions: many of the 16 assemblies are “doing the same”. Results were obtained using the same settings as in Fig. 1,
except the population limit that was set to 16 assemblies, instead of one.
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Figure 3: Results of Lipidia simulating 16 assemblies in finite environment. (A) The number of attractors as they are discovered in time.
(B) Attractor frequencies: the number of assemblies that occurred in each attractor throughout the entire simulation. The graphs show that
the introduction of a finite environment accelerates the discovery of attractors and relaxes the dominance of the single attractor, or the very
few ones. Results were obtained using the same settings as in Fig. 2, except for the infinite environment model that was replaced with a finite
environment model.

of “food” molecules, might help to “do more”. According to
our results, it only helps to “do more of the same”. Diversity
seems to spring when resources are limited. It is when re-
sources for the “best solutions” run out that the race towards
alternative solutions begins.

A complete description of Lipidia has been given, al-
though some of its features have not yet been used and
are due for future work. Lipidia is capable of simu-
lating a few hundred assemblies within a few hundred
grid locations. Future experiments could use these large
scale capabilities to explore large grids containing large
assembly populations. Diffusion, birth, and death could
also be employed. Lipidia is implemented in Java and
can run on many platforms. It is available online at:
http://ool.weizmann.ac.il/lipidia .
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