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During natural viewing, the eyes are never still. Even during fixation, miniature movements
of the eyes move the retinal image across tens of foveal photoreceptors. Most theories of
vision implicitly assume that the visual system ignores these movements and somehow
overcomes the resulting smearing. However, evidence has accumulated to indicate that
fixational eye movements cannot be ignored by the visual system if fine spatial details
are to be resolved. We argue that the only way the visual system can achieve its high
resolution given its fixational movements is by seeing via these movements. Seeing via
eye movements also eliminates the instability of the image, which would be induced by
them otherwise. Here we present a hypothesis for vision, in which coarse details are spa-
tially encoded in gaze-related coordinates, and fine spatial details are temporally encoded in
relative retinal coordinates.The temporal encoding presented here achieves its highest res-
olution by encoding along the elongated axes of simple-cell receptive fields and not across
these axes as suggested by spatial models of vision. According to our hypothesis, fine
details of shape are encoded by inter-receptor temporal phases, texture by instantaneous
intra-burst rates of individual receptors, and motion by inter-burst temporal frequencies.
We further describe the ability of the visual system to readout the encoded information
and recode it internally. We show how reading out of retinal signals can be facilitated by
neuronal phase-locked loops (NPLLs), which lock to the retinal jitter; this locking enables
recoding of motion information and temporal framing of shape and texture processing. A
possible implementation of this locking-and-recoding process by specific thalamocortical
loops is suggested. Overall it is suggested that high-acuity vision is based primarily on
temporal mechanisms of the sort presented here and low-acuity vision is based primarily
on spatial mechanisms.

Keywords: active vision, fixational eye movements, neuronal phase-locked loop, temporal coding, neural coding,
simple cells, thalamocortical loop, feedback

INTRODUCTION
During fixation, the eyes move across several arcminutes with
amplitudes that fall off with the scanning frequency (Findlay,
1971; Eizenman et al., 1985). These fixational eye movements
(FeyeM) cover the entire spectrum between ∼1 and more than
100 Hz, with increased power in two main frequency ranges: one
between ∼1 and ∼20 Hz (“drifts”) with amplitudes of less than
ten to a few tens of arcminutes (′) and another between ∼40 and
∼100 Hz (“tremor”) with amplitudes of a few arcseconds (′′) to
a few arcminutes (Ratliff and Riggs, 1950; Barlow, 1952; Yarbus,
1967; Bengi and Thomas, 1972; Shakhnovich, 1977; Coakley, 1983;
Eizenman et al., 1985). Microsaccades (brief movements of a few
to a few tens arcminutes) usually interrupt these movements a few
times per second and move both eyes simultaneously in the same
direction (Krauskopf et al., 1960; St Cyr and Fender, 1969; Moller
et al., 2002; Engbert and Kliegl, 2004). Drifts and microsaccades
usually counteract each other such that the eyes repeatedly scan

Abbreviations: FeyeM, fixational eye movements; FF, feedforward; NPLL, neuronal
phase-locked loop; PD, phase detector; RCO, rate-controlled oscillator; SC, simple
cell; sRF, subfield of a simple receptive field.

the same fixational area (St Cyr and Fender, 1969; see reviews by
Steinman and Levinson, 1990; Martinez-Conde et al., 2004).

Since time constants of retinal responses are in the order of
30–100 ms (Sakuranaga et al., 1987; Nirenberg and Meister, 1997;
O’Brien et al., 2002), snapshots of spike activity of retinal ganglion
cells, even if taken within a brief time interval, usually include
spikes that were evoked by FeyeM occurring tens of ms before
(Barlow, 1952). These slow retinal traces would smear the per-
ceived image if the readout circuits would assume spatial coding
alone, namely, that the spatial map of retinal spikes at a given
moment provides all the information that is required for perceiv-
ing the external image accurately. However, smearing could be
avoided if temporal delays between retinal spikes would be appro-
priately processed by the visual system (Ahissar and Arieli, 2001).
Traditionally, temporal mechanisms had not been considered for
the processing of stationary objects, whereas they were considered
for the processing of moving objects, perhaps because stationary
objects were intuitively conceived to induce stationary stimuli on
the retina. Currently, however, it is widely accepted that temporal
aspects both in the external world and in the encoding need not be
averaged out when analyzing or modeling visual coding because,
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as far as the retina is concerned, stationary stimuli do not exist
during natural viewing–retinal images are always moving (Kagan,
2012).

In fact, our vision of stationary images depends crucially on
these movements. Virtually all retinal ganglion cells respond to
transients of light, and many respond only to transients (Hart-
line, 1938; Hubel, 1988). The dependency of vision on transients
is so strong that stabilization of a retinal image not only impairs
visual performance (Kelly, 1979; Tulunay-Keesey and VerHoeve,
1987; Rucci and Desbordes, 2003; Rucci et al., 2007), but eventu-
ally causes the image to fade away (Fading time can be anything
between 80 ms to a few seconds, depending on the stabilization
method, Riggs et al., 1953; Pritchard, 1961; Yarbus, 1967; Ditch-
burn, 1973; Coppola and Purves, 1996). Thus, an evolutionary
selection for FeyeM may have emerged to prevent retinal adap-
tation when viewing stationary objects. Whether FeyeM emerged
first and retinal sensitivities adapted or vice verse is not known and
is not relevant to the current discussion. Similarly, whether FeyeM
result from uncontrolled muscular noise (Carpenter, 1988), or
(/and) are centrally controlled (Shakhnovich, 1977; Coakley, 1983;
Eizenman et al., 1985; Martinez-Conde et al., 2004) is not directly
relevant to the current discussion, although it is certainly rele-
vant to the understanding of vision in general. In this respect it
is important to mention recent convincing evidence supporting
internal control of FeyeM in a way that optimizes retinal pro-
cessing of natural images (Kuang et al., 2012). In any case, what
is directly relevant to the current discussion is the fact that the
two phenomena are congruent: FeyeM continuously provide the
transient stimuli required to activate retinal cells. This congruency
constrains the possible ways in which retinal information can be
encoded accurately. On the one hand, it precludes a pure spatial
code at the retina, since the spatial image is smeared. On the other
hand, it generates accurate temporal coding of the image, since
retinal cells are predominantly activated when their receptive field
(RF) crosses an edge of an image.

What are the relative contributions of spatial and temporal
codes to retinal outputs? There is no doubt that spatial coding,
in which spatial location of external stimuli is coded by ganglion
cell identity and illumination intensity by the cell’s firing intensity,
would work just fine for low resolution vision, where low reso-
lution here means resolution coarser than the extent of FeyeM
(around 10′). This is because integration of retinal responses over
fields larger than the extent of FeyeM is hardly affected by FeyeM.
The question is whether spatial coding would work for fine vision,
i.e., for spatial details smaller than 10′, and specifically for hyper-
acuity vision, i.e., for spatial details smaller than 0.3′. It might
be argued that the visual system is still using the spatial code for
fine and hyperacuity vision, while applying some error-correction
mechanisms to overcome the effect of FeyeM. It appears that error-
correction mechanisms proposed in the past for the visual system,
such as shifter circuits (Anderson and Van Essen, 1987) or interpo-
lation circuits (Barlow, 1979; Crick et al., 1981), are not suitable for
FeyeM (Ahissar and Arieli, 2001). Recently, an elegant mechanism
that uses FeyeM statistics to correct for their effect in a discrim-
ination task had been suggested (Pitkow et al., 2007). However,
it is not yet clear whether mechanisms of this type can correct
for FeyeM when the object is not known in advance or when

more than one feature of the object are to be perceived or when
multiple objects are present in a complex background such as in
natural vision. But perhaps the strongest argument against the use
of spatial-rate coding for fine vision is that the retinal rate code is
an order of magnitude less accurate and reliable than the retinal
temporal code (Berry et al., 1997). In every response, occurring
upon an illumination transient, the timing of the first spike in a
burst is accurate and reliable while the number and rate of fol-
lowing spikes is variable and not consistent (Reich et al., 1997). It
takes a great deal of justification for the visual system to ignore
the most informative code and use the less informative one when
processing fine spatial details (Van Rullen and Thorpe, 2001; see
A Simple Quantitative Account Against Spatial Retinal Coding of
Fine Spatial Details in Appendix 2, and Meister and Berry, 1999).

We present here a mechanism for temporal encoding and
decoding in the visual system. We consider it as a new dynamic
theory of vision, to follow previous original suggestions by Mar-
shal and Talbot (1942), Bryngdahl (1961), Arend (1973), Ahissar
and Arieli (2001), Rucci (2008). The analysis presented here does
not aim to disprove the possibility of spatial coding for fine
details – this remains to be an experimental question. The analy-
sis presented here is aimed at showing that in the visual system
a temporal encoding-decoding scheme is possible, and to show a
possible specific implementation; we do not claim that this is the
only possible implementation, or that the system must implement
dynamic processing this way. We do claim that the mechanism
presented here is a plausible and efficient way to process retinal
outputs and that it is consistent with a large body of data.

A RELATIVE TIME HYPOTHESIS FOR VISION
SCOPE OF THE HYPOTHESIS
We refer here to the entire spectrum of FeyeM, excluding microsac-
cades, and to all two-dimensional visual cues that define visual
objects (we term those 2D cues), excluding depth cues. Our analy-
sis that follows will show that different 2D cues can be encoded
by different variables of retinal responses: shape by inter-receptor
temporal phases, texture by instantaneous intra-burst rates, and
motion by inter-burst temporal frequencies. The information car-
ried by these retinal signals is valid only during an individual cycle
of eye movement, and thus must be read out during that cycle.
We will show how an NPLL-like locking-and-decoding process,
implemented by thalamocortical loops of the visual system, can
set the timing for meaningful cortical processing of 2D cues and
decode some of these cues. Decoding of relative depth information
is postulated to be implemented by an independent mechanism,
possibly a mechanism that relies on receptor activation during
microsaccades, since these movements are predominantly in the
horizontal direction (Liang et al., 2005) and are highly coordinated
between the two eyes. Outlines for such an algorithm are described
in Sampling of Relative Depth Information by Microsaccades in
Appendix 2; the rest of the article deals with the processing of 2D
details via non-saccadic FeyeM.

ASSUMPTIONS
1. Visual perception is assumed to be a process that builds on sen-

sory data acquired during either fixation or fixational pauses,
i.e., pauses between adjacent saccades (Barlow, 1952). During
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these periods, the eye rotates back and forth (FeyeM) and thus
“scans” or “palpates” the image. Illumination changes induced
during these movements activate retinal photoreceptors and
dominate the input to the LGN.

2. Eye movements during fixation and fixational pauses typi-
cally consist of bursts of a few (2–4) cycles, and each burst
has a dominant oscillatory frequency (Barlow, 1952; Byford
and Stuart, 1961; Matin and Pearce, 1964; Bengi and Thomas,
1968; Coakley, 1983; Moller et al., 2002; Bosman et al., 2009).
Data recorded from five subjects while fixating on single points
or grating images, or while freely viewing a natural image,
demonstrate this behavior (see Examples of Human FeyeM in
Appendix 2).

3. Responses of visual neurons during natural viewing cannot be
predicted from responses to flashed stimuli on paralyzed eyes.
During natural vision there are no flashes. Rapid activations
that are induced by saccades, and could potentially be compared
to flashed stimuli, always involve retinal motion. Furthermore,
downstream processing of the retinal signals evoked immedi-
ately after saccades likely involves significant suppression and
distortion that are not present when flashing on passive eyes
(Carpenter, 1988; Ross et al., 2001; Zirnsak et al., 2010; Hamker
et al., 2011).

4. Retinal activations that are relevant for perception during nat-
ural viewing are generated by retinal motions caused by object
motion or eye rotations (Ahissar and Arieli, 2001).

5. Functional anatomy exposed by flashed stimuli (Hubel, 1996;
Ferster and Miller, 2000; Reid, 2001) is assumed to be valid
also during natural viewing. During natural viewing, image
scanning via FeyeM induces a variety of activation levels in
overlapping RFs at various orientations; all these activations,
of which the most intense ones have no priority, are assumed
to be relevant for visual perception.

6. Temporal precision at the retina and LGN is in the order of
1 ms. Temporal precision at the retina was measured in sala-
manders and rabbits and was found to depend on stimulus
contrast. The temporal jitter (for repeating identical stimuli)
of fast OFF cells in the salamander retina is a power function
of the stimulus contrast, with an exponent close to −0.5, such
that at contrast of 35% the jitter is 4.4 ms (Berry et al., 1997);
higher contrasts were not tested. In the cat’s LGN, with mod-
erate contrast levels, many individual cells show time precision
of <1 ms (Reinagel and Reid, 2000). Here we assume that the
temporal jitter in the human retina is not larger than that of
the salamander (whose retina can be compared to the human’s
peripheral retina) or the cat, and that it continues to decrease
with increasing contrasts. In our simulations of human foveal
vision we assume temporal jitter≤1 ms in the retina and LGN;
the results, however, do not depend on the exact value of the
temporal jitter.

FORMAT OF THE PAPER
The primary description of the hypothesis uses statements and
derivations expressed in common terminology of experimental
neuroscience, supported by schematic figures. The internal con-
sistency of the hypothesis is demonstrated using formal definitions
and derivations, which are presented in Appendix 1 and referenced

in the relevant places in the text, and computer simulations. Data
that support our assumptions are presented in Appendix 2.

SAMPLING VIA SIMPLE RECEPTIVE FIELDS
2D spatial details are sampled by each eye independently. The
information conveyed to the visual system depends on the exter-
nal scene, the pattern of FeyeM of that eye, and the structure of
afferent RFs. According to the afferent scheme suggested by Hubel
and Wiesel (1962), which is consistent with a large body of data
(reviewed in Hubel, 1996; Ferster and Miller, 2000; Reid, 2001),
cortical simple cells receive inputs from elongated arrays of retinal
ganglion cells via parallel channels through the LGN. These elon-
gated arrays are composed of ganglion cells that share the same
polarity, ON or OFF; interestingly, this segregation seems to be
refined by FeyeM during development (Rucci et al., 2000). As a
result of this anatomical arrangement, simple cells respond most
vigorously to bars of the appropriate polarity that are oriented
parallel to the elongated axis of their RF and are flashed on or
moved across it (Hubel and Wiesel, 1962). However, they do not
respond only to oriented bars. Both in cats and primates simple
cells respond also to single dots flashed within their RF (Hubel and
Wiesel, 1962; Gur and Snodderly, 1987; Hirsch et al., 1995; Tsao
et al., 2003). Simple cells and other cortical cells respond vigor-
ously to single spots or random dot patterns that are moved across
their RFs in various directions (Hubel, 1958; Skottun et al., 1988;
Pack et al., 2003a; Grunewald and Skoumbourdis, 2004). Interest-
ingly, simple cells even show selectivity for dots moving along the
elongated axis of their RFs (Geisler et al., 2001). As a result, when
complex stimuli are moved across a stationary retina, simple cells
respond in a variety of conditions, and are not limited to lines of a
specific orientation (Creutzfeldt and Nothdurft, 1978). Scanning
velocities in the above experiments were a few degrees per second,
comparable with eye velocities during FeyeM (Riggs et al., 1954;
Bengi and Thomas, 1968). Indeed, cortical neurons respond reli-
ably also in the reverse, natural case, in which a moving eye scans
stationary images during fixation (Snodderly et al., 2001). This
latter study demonstrates clearly that the primate visual system
tracks accurately the contrast changes scanned by the eye during
FeyeM.

The size of simple RFs decreases as they get closer to the fovea.
However, as recordings approach the fovea, measurements of RF
size become difficult due to eye movements, especially in awake
primates. Measurements done with the aid of image stabilization,
i.e., while moving the image along the on-line-recorded trajec-
tory of the FeyeM, show that at eccentricities of 2–9˚, the width
of subfields of simple RFs in layer 4 averages around 12 arcmin,
and can be as low as 5 arcmin or less (Kagan et al., 2002). We are
not aware of stabilized data from smaller eccentricities. Extrapo-
lation of these data suggest that the width of subfields of foveal
simple cells is expected to be at the level of a single-cone, which
is consistent with a number of anatomical, physiological, and psy-
chophysical indications (Polyak, 1941; Daniel and Whitteridge,
1961; Smallman et al., 1996; McMahon et al., 2000). It is not yet
known whether foveal simple cells possess a single subfield (mono-
contrast cells Kagan et al., 2002) or more, and what aspect ratios
characterize their subfields. In the following we will thus analyze
the responses of single subfields of foveal simple cells, and will
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term such a subfield sRF. An ON sRF is a retinal field in which a
given simple cell responds to transitions from dark to light, and an
OFF sRF is a retinal field in which a given simple cell responds to
transitions from light to dark. The examples depict arrays of foveal
sRFs of a similar polarity, and a size of 1× 4 cones. Whenever rela-
tive cortical coding is addressed, it relates to relative coding among
sRFs of the same polarity.

THE FEEDFORWARD SIGNALS: CODING ALONG VS. ACROSS sRFs
In the natural case, the entire visual field is sampled synchronously
by all retinal cells at the frequency of the FeyeM, and each location
in the visual field is sampled in succession by neighboring reti-
nal cells (Figure 1). During fixation, a single external dot “draws”
contours on the retina, which cross sRFs at various directions,

determined by the direction of movement of the eye (Figure 1). If
responses of cortical simple cells were based on feedforward (FF)
circuits only (“FF response”), their duration would be determined
by the duration of the intersection of the dot trajectory and the
sRF. As we will see later, the actual responses of simple cells involve
additional components contributed by the thalamocortical closed
loop circuitry. However, in order to understand retinal encoding
along and across sRFs, we virtually open these loops and analyze
the FF responses as if no corticothalamic feedback is functioning.

Feedforward responses contain information about fine spatial
relationships within the image. The resolution of this information
depends on the orientation of the sRF with respect to the scanned
image. Consider, for example, the schematic example in Figure 2A.
When traversed by the eye, the external image is encoded by sRFs
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FIGURE 1 | (A) A short epoch of FeyeM recorded from a human subject
fixating on a cross (see Examples of Human FeyeM in Appendix 2 for
methods and Figures A1 and A2 in Appendix 2 for more examples). Left, eye
rotation trajectory on a 2D plane; coordinates (0, 0) denote cross center and
the blue circle denotes eye angle at time=0. Fight, horizontal (green) and

vertical (cian) coordinates of eye angle as a function of time. FeyeM data
courtesy of Dr. Moshe Fried. (B) A schematic description of a retinal trajectory
of a stationary external dot (red) over a moving retinal mosaic of foveal
ganglion RFs. Cortical simple cells receive their inputs, via thalamocortical
neurons, from elongated retinal fields.

Frontiers in Computational Neuroscience www.frontiersin.org November 2012 | Volume 6 | Article 89 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Ahissar and Arieli Seeing via miniature eye movements

 

eye movement 
0' 4' 

external image 

sRFs 

receptive fields 

A 

 reading 

=> 

=> 

representations 

= R R 

= R R 

eye movement 

= R 

= R 

A

B

FIGURE 2 | Scanning of a stationary edge by drift. (A) Retinal mosaic (as
in Figure 1) scans a stationary object whose left edge is patterned during a
horizontal drift. The peak-to-peak amplitude of the horizontal projection of
FeyeM is 4′. Retinal ganglion RFs are indicated by black circles, and sRFs
with horizontal (red) and vertical (blue) orientations are indicated by ellipses.
(B) Scanning along the long axes of sRFs increases spatial resolution. In
this example, reading sRFs oriented parallel to the global orientation of the
patterned edge of an external image (blue) cannot generate different
representations (R) for different edge patterns, whereas reading sRFs
oriented perpendicular to the edge (red) can (using temporal coding).

oriented in various directions, all of which provide useful infor-
mation to the brain. Traditionally, processing of oriented edges,
such as the patterned edge, had been assumed to rely on spike rate
(or count) information which represents the matching between
the orientations of the sRF and the edge. For example, the global
orientation of the patterned edge in Figure 2A can be determined
by the identity of maximally active sRFs – vertical ones in this case
(blue ellipses). The orientation angle of the edge can be approx-
imated with high resolution by interpolating firing intensities of
simple cells having nearby orientations (Wilson, 1986). However,
this kind of coding is limited in spatial resolution. Simple cells that
are oriented parallel to edges would respond with the same mean
intensity to edges whose general orientations are similar, regardless
of their fine shape (e.g., Figure 2B). In other words, the sampling
resolution of an array of sRFs is the lowest along an axis parallel
to their orientation. Furthermore, the span and resolution of this
intensity coding is limited by the maximal number of spikes that
can be generated during a single scan of the edge. With foveal sRFs
of one to two ganglion cells width, and FeyeM velocity of about
100 ′/s, the entire width of the sRF crosses the edge within about
5 ms, leaving time for one to two spikes per sRF. This poses sig-
nificant constrains on the number and reliability of sRFs required
for reaching perceptual resolution (see also A Simple Quantitative
Account Against Spatial Retinal Coding of Fine Spatial Details in
Appendix 2).

Another important factor that enormously constrains the way
this information can be read is the existence of FeyeM. Simple
cell responses depend crucially on the direction of eye movement.
Thus, for example, if the movement of the eye is perpendicular
to the orientation of the edge (e.g., Figure 2), and its veloc-
ity is appropriate, vertical sRFs will fire at maximal rate. How-
ever, response rate will decrease significantly when the direction
of FeyeM becomes more parallel to that orientation. Moreover,
movement in opposite directions would yield significantly dif-
ferent responses in most sRFs (see Snodderly et al., 2001). Thus,
reading the intensity code of simple cells must take into account the
direction of FeyeM at any given moment or employ a mechanism
that somehow corrects for them (e.g., Anderson and Van Essen,
1987). To retain high resolution, such a mechanism must operate
pre-cortically, which does not seem to be plausible (Ahissar and
Arieli, 2001).

So how does the visual system restore the information that is
lost by FeyeM smearing? The simple answer is that the visual sys-
tem does not need to restore this information because it is not lost.
This information is conveyed in a form of a temporal code that is
encoded along the elongated axes of sRFs. In this paper we thus
suggest an alternative to the classical encoding scheme, an alterna-
tive which we believe is consistent with existing data at least to the
same degree that the classical one is. We suggest that information
obtained across the elongated axes of sRFs (e.g., blue vertical sRFs
in Figure 2) is used for coarse image analysis, while fine details
are encoded along the elongated axes of the sRFs (Figure 2, red,
horizontal sRFs). With this encoding scheme, spatial information
is encoded by temporal neuronal variables, and hyperacuity reso-
lution is an intrinsic property of the encoded signals (Ahissar and
Arieli, 2001). As we will see below, this temporal encoding cap-
tures the fine differences between the different edges presented in
Figure 2B.

TEMPORAL ENCODING
While the mechanisms of spike generation at the retina are not
completely understood, it is known that they can involve inte-
gration times of tens of ms (Meister et al., 1994; Chichilnisky,
2001). Importantly, however, onset timing uncertainty in the
retina and LGN is in the order of 1 ms (Berry et al., 1997;
Reinagel and Reid, 2000). Here, thus, we assume that the tem-
poral precision of retinal ganglion cells, and of relative delays
between neighboring ganglion cells, are reliable at the level of
1 ms. Based on that, the entire set of spatial relationships in
an image can be encoded by a set of temporal delays between
neuronal events (Ahissar and Arieli, 2001). Figure 3 demon-
strates, schematically, such precise temporal encoding for sta-
tionary (Figures 3A,B) and moving (Figures 3C,D) stimuli: a
horizontal sRF (red ellipse), composed of six OFF-type retinal
ganglion RFs, scans an image during three cycles of an oscillatory
epoch of horizontal eye movement (Figure 3A). Epochs of two
to four oscillatory cycles of a fairly constant frequency are abun-
dant in human and monkey FeyeM data (Barlow, 1952; Byford
and Stuart, 1961; Matin and Pearce, 1964; Bengi and Thomas,
1968; Coakley, 1983; Moller et al., 2002; Bosman et al., 2009);
one such example is depicted in Figure 3E (see also Figure A2 in
Appendix 2).
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FIGURE 3 |Temporal encoding along the long axis of sRF during drift:
a schematic description. Encoding of stationary (A,B) and moving (C,D)
images are depicted. A single horizontal sRF, shown in three time frames
(t 0, t 0 +40 ms and t 0 +80 ms), traverses a dark rectangle, which is longer
than the peak-to-peak amplitude of the horizontal FeyeM. The horizontal
FeyeM amplitude (peak-to-peak) is 4′ and the frequency is 12.5 Hz. (A)
Left-most and right-most positions of the sRF relative to the position of a
stationary image, within each single cycle of FeyeM. (B) Eye trajectory
along the horizontal direction (blue curve) and neuronal responses (vertical
lines) composing the FF signal of the sRF in (A). Ieye and Aeye are the period

(1/frequency) and amplitude of FeyeM, Ir – is the inter-burst period of the
FF response, and t 0 is an arbitrary time. One spike is emitted per crossing
of the contrast edge by each of the ganglion RFs. (C) Left-most and
right-most positions of the sRF relative to the positions of a moving dark
rectangle. (D) Eye and image trajectories along the horizontal direction and
FF responses of the sRF in (C). V eye is the average eye velocity in the
protraction direction, and Vx is the image velocity. (E) An example of a
human horizontal FeyeM oscillatory epoch, aligned with our schematic
example for comparison (courtesy of Flemming Møller; see Figure 4 in
Moller et al., 2002).

Figure 3B shows a burst of five spikes during the rightward
movement, generated by the retinal ganglion cells that are incor-
porated within the sRF that scans the image. Note that with this
horizontal eye movement the response is generated only during
rightward movement, which occurs because this sRF is composed
of OFF-type fields. With ON-type fields, responses would have
been generated only during leftward movement. In the following,
we refer to the direction of FeyeM that generates responses in a
particular sRF as its “protraction direction,” whereas the opposite
direction is referred to as “retraction direction.”

Encoding of motion
Movements in the visual field produce Doppler-shifts effect of
the retinal activation frequencies. For example, a light-to-dark
edge that is moving away from an OFF-type sRF (Figure 3C)
lengthens the intervals between successive retinal activations that
are caused by the FeyeM oscillation (Figure 3D; compare the
phases of burst onsets in the FeyeM cycle). This lengthening
result in decreased inter-burst and intra-burst frequencies, and
the decreases are in proportion to the velocity of the object (Vx).
Movement in the opposite direction will increase these frequencies

(Retinal Frequencies and Encoding of Motion in Appendix 1,
Eq. 3). These Doppler-shifts represent the component of veloc-
ity that parallels the trajectory of the eye. Movement components
perpendicular to the trajectory of the eye might be detected
by other mechanisms, possibly non-foveal ones. For example,
ganglion cells of salamander and rabbit retina detect relative
motion induced by FeyeM-like movements (e.g., Olveczky et al.,
2003). Their detection mechanism probably relies on integra-
tion of many photoreceptors by each ganglion cell, an integra-
tion that does not occur in the human fovea (Polyak, 1941).
Such retinal mechanisms, thus, could serve peripheral motion
detection.

Encoding of shape
Encoding of shape, i.e., of the outline of an object, is demonstrated
by the scanning of a stationary terraced edge (Figure 4A). Since the
retinal movement of the stationary object is spatially coherent, the
relative temporal phases of the bursts, across the corresponding
sRFs, encode the relative spatial locations of the terraces (Tem-
poral Encoding in Appendix 1, Eq. 1). In this example, a single
cycle of FeyeM (4′ at 12.5 Hz) is shown. A burst of six spikes per
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FIGURE 4 |Temporal encoding of texture during drift: a schematic
description. Retinal mosaic scans a stationary smooth (A) and patterned
(B) surfaces during horizontal drift (movement parameters and other

conventions as in Figures 2 and 3). Every crossing of a light-to-dark luminance
border by a single ganglion RF generates a single spike. For clarity, spikes are
drawn only during one direction of drift (the “protraction” direction).

FeyeM cycle occurs as the six horizontal OFF-type sRFs traverse
the objects. Spatial offsets of 15′′ are encoded by temporal delays
of ∼2.5 ms (<V eye>= 4′/40 ms). Note that with encoding along
the elongated axes of sRFs, neither the firing rate nor the total
spike count provide information about the relative locations of
the edges in the external image.

Encoding of texture
Encoding of texture, i.e., of the characteristics of surfaces such as
patterning and spatial frequencies, is demonstrated by the scan-
ning of two gratings (Figure 4). Here, the outline of the object
(its shape) is again encoded by the relative onset phases of the FF
bursts. However, unlike the case of a smooth surface (Figure 4A),
a patterned surface induces additional spikes in each ganglion cell:
each ganglion cell fires every time it crosses a luminance change
while scanning the surface (Figure 4B). The mean spatial fre-
quency of the surface is encoded by the mean firing rate during
protraction (compare Figures 4A,B). The exact pattern is encoded
by the temporal phases. In the following we will assume smooth
surfaces for simplicity.

ENCODING OF FeyeM DIRECTION AND RESOLVING IMAGE DETAILS BY
sRF STRUCTURE: 1D VISION
Most of sRFs contain a “rod” of one polarity (ON or OFF) sur-
rounded by flanks of the opposite polarity (Hubel and Wiesel,
1962). This special structure produces a kind of an isolated corri-
dor through which image details are encoded in only one direc-
tion – along the elongated axis of the sRF. With typical FeyeM
velocities, an image contrast scanned by a sRF in a direction not
parallel to its elongated axis will not excite the central “rod” due to
the inhibition activated at the flank a few ms before. This pro-
tected corridor offers two important functions. First, it allows

independent processing of different axes of the visual image, e.g.,
vertical vs. horizontal (1D vision). Second, it provides information
about the direction of the FeyeM. For example, when scanning
velocity is in the working range of the flank-center inhibition a
vertical FeyeM will not activate a horizontal sRF and a horizontal
FeyeM will not activate a vertical sRF, whatever image is scanned.
Note also that complex cells are even better encoders of FeyeM
direction (and perhaps also speed) due to their integration of sev-
eral SCs of the same orientation. Moreover, integrated activity of
different horizontal complex cells can signal onset times of cycles
of FeyeM in the horizontal direction, and that of vertical complex
cells in the vertical direction.

TEMPORAL DECODING
Decoding of temporally encoded signals can be implemented by
various neuronal algorithms (Carr, 1993; Mauk and Buonomano,
2004; Theunissen et al., 2004). Specifically, encoding by a single
common oscillatory modulation, as is induced here by FeyeM, can
be decoded efficiently by simple FF neural networks (Hopfield,
2004). The efficiency of several of these decoding algorithms had
been demonstrated for sensory systems other than the visual sys-
tem. While some of these algorithms could also be plausible for
the visual system, we prefer to suggest a specific algorithm which
is based on the circuitry and cell physiology found in the primary
visual thalamocortical system.

For the description of the proposed decoding process, we depict
an example similar to that of Figure 4A, but with the addi-
tion of a moving object (Figure 5A). Three of the horizontal
bars that compose the external image are stationary and one
(dashed rectangle) is moving leftward (Figure 5A). As a result,
the FF frequencies of the sRF scanning the moving bar increase
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FIGURE 5 |Temporal encoding and decoding by the visual system.
(A) A retinal mosaic (as in Figure 2) upon horizontal FeyeM scanning of a
stationary object and a moving bar, both of which have the same color and
luminance (the moving bar is indicated by a broken rectangle). The bar
starts to move leftward around t 0 +20 ms, at a velocity of 3 ’/s. The
horizontal arrows mark the horizontal movement of the eye. The horizontal
FeyeM amplitude (peak-to-peak) is 4′ and the frequency is 12.5 Hz. (B) FF
responses of the horizontally oriented sRFs [red ellipses in (A)]. The sRF
that scans the moving bar produces a FF response with higher inter-burst
and intra-burst frequencies than its neighbors. (C) NPLL Decoding
algorithm. PD, phase detector; X, phase detection, RCO, rate-controlled
oscillator; ∼, local oscillations tin, input time; tOSC, oscillator time; Rout, PD’s
output representing the phase difference between tin, and tOSC. Blue,
temporal signals; red, intensity (rate) signal. (D). Implementation of phase

comparison by gating. At each cycle, only those retinal spikes that arrive
after the onset of the cortical feedback (blue squares) will “pass the gate.”
Phase comparison is obtained by longer (shorter) delays yielding fewer
(more) spikes due to decreased (increased) overlap between the inputs.
Note the cycle-to-cycle temporal dynamics of both the retinal input and the
periodic gating while processing the moving bar. Onset of the retinal signal
is represented by tin in (C) and onset of the gating signal by tOSC in (C). (E)
Output code of the proposed thalamocortical decoder. The stationary shape
is represented by the temporal phase relationships among the outputs of
the simple cells (first cycle). The velocity of the bar is represented by a
change in the spike count (two instead of three spikes/cycle) of the simple
cells [represented by Rout in (C)]. (Inset) Expansion of the second cycle in
(B) to show inter-burst (Ir) and intra-beurst (Ib) intervals for stationary (black)
and moving (magenta) bars.

(Figure 5B and inset): the inter-burst period is shortened by
∼2.5 ms in each cycle, and the intra-burst period is shortened
by a similar ratio. These changes are specific to the sRF scanning
the moving bar; inter- and intra-burst periods remain unchanged
for the FF signals that represent the stationary parts of the external
image.

Thus, shape and velocity are encoded at the retina by the tempo-
ral phases and frequencies of retinal bursts, respectively. Texture,
as shown above, is encoded by the intra-burst firing pattern. The
temporal structure of retinal activities is extremely reliable (Berry
et al., 1997) and is well preserved up to the thalamus (Levick et al.,
1972; Lee et al., 1981; Reinagel and Reid, 2000), and thus can be
efficiently decoded by thalamic or thalamocortical circuits. In the

following text and Figures 5 and 6 we demonstrate that decoding
by thalamocortical circuits is possible.

Possible decoding by thalamocortical phase-locked loops
A constraint of the FeyeM-driven encoding scheme is that decod-
ing must be locked to movements of the eye. Comparison of onset
times or temporal periods of neighboring retinal cells is meaning-
less if done across different cycles of FeyeM, because eye position
and velocity are not constant across cycles. Moreover, decoding
of shape and velocity requires an accurate comparison, in each
FeyeM cycle, of the burst onset times of retinal sRFs. These con-
strains suggest that the brain should either use efferent copies of
the signals that control the FeyeM (Shakhnovich, 1977; Coakley,
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FIGURE 6 | NPLL implemented by a visual thalamocortical loop. (A) A
schematic description of the proposed thalamocortical closed loop
decoder. The scheme is based on the schematic description of the FF
connectivity suggested by Hubel and Wiesel (1962); the feedback
connectivity added in blue closes the loop in a way that permits a PLL-like
operation. Excitatory and inhibitory connections are represented by open
triangles and solid circles, respectively. Dashed line indicates possible poly
synaptic link. Input, retinothalamic input; SC, simple cells; M, modulatory
excitatory input; ∼, oscillatory (“chattering”) neurons. Inset:

implementation of the phase detection function by corticothalamic gating:
the output is active only when both the Input and the “gate” are active.
(B) Schematic phase plane of the two basic transfer functions of the loop.
SC’s transfer function (red): output spike count (Rout) decreases as the
retino-cortical delay (tD) increases. Oscillatory cells transfer function (blue,
dashed): tD increases as Rout increases (note reversal of axes here). The
crossing point of the transfer functions is the set point for a specific retinal
temporal frequency. The inter-burst frequency of the retinal input is directly
related to tD and inversely related to Rout.

1983; Eizenman et al., 1985), if they are available, or employ a
mechanism that can lock to the afferent sensory signals; a com-
bination of both strategies is also possible. Here we show how
the brain could use a mechanism that locks to the sensory signals
without the need for an efference copy.

Existing data from the mammalian visual system indicate that
the visual cortex employs oscillatory mechanisms that can be used
by the visual system to decode the information encoded by FeyeM
(see Cortical Oscillations below). The most efficient oscillation-
based temporal decoding mechanism is probably the phase-locked
loop (Gardner, 1979), whose neuronal implementation is termed
the neuronal phase-locked loop (NPLL, Ahissar, 1998). In its basic
form a single NPLL consists of a phase detector (PD), whose out-
put firing rate reflects the temporal phase difference between its
inputs, and a rate-controlled oscillator (RCO), whose oscillating
frequency is controlled by its input firing rate; the circuit forms a
negative closed loop (Figure 5C). Experimental evidence suggests

that thalamocortical NPLLs are involved in temporal decoding in
the mammalian somatosensory system (Ahissar and Vaadia, 1990;
Ahissar et al., 1997, 2000; Kleinfeld et al., 1999, 2002; Ahissar and
Zacksenhouse, 2001; Sosnik et al., 2001; Moore, 2004; Zacksen-
house and Ahissar, 2006; Fox, 2008). We thus explore how could
visual NPLLs, if exist, facilitate the readout of the information
encoded by FeyeM.

Below (text and Figures 5 and 6), we describe how a single
NPLL circuit, when implemented within a visual thalamocortical
loop, could decode retinal information that is temporally encoded
by FeyeM. We suggest that many such NPLLs are implemented
in parallel, each having a slightly different intrinsic frequency,
which together would cover the entire spectrum of FeyeM fre-
quencies (see The Visual Motor-Sensory Loop and Figure 9 below
and A Global View on the Perceptual Process in the Discussion;
Ahissar, 1998). We suggest an implementation that relies on the
same experimental data often providing the basis for purely spatial
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models. The suggested implementation, however, involves new
functional interpretations of classical terms, such as orientation
selectivity and optimal response. For example,one important devi-
ation from classical convention is that optimal responses do not
necessarily involve maximally possible firing rates, and computa-
tions are not necessarily based on feature detection signaled by
firing rates.

Decoding algorithm
The core idea behind oscillation-based decoding is that the oscil-
lations establish a local predictor for input timing (Figure 5C). By
comparing the predicted time (t osc) with the actual time of the
input (t in), a difference signal is generated (Rout). In closed loop
oscillation-based decoding, such as in the NPLL, the difference
signal modulates the local oscillator in a negative feedback man-
ner, namely it drives it in a direction that will approach a constant
difference. If parameters are tuned correctly this negative feedback
forces the local oscillations to track the timing of the input (see
Loop Operation in Appendix 1 and Gardner, 1979). This gener-
ates a delayed internal replica of input times, which is locked to the
FeyeM (Figure 5D). The local oscillations, being the best internal
predictors for input timing, provide an internal marker for down-
stream processing, or a kind of a processing clock. In addition,
when the loop is locked, the difference signal, Rout, represents the
deviations of the input timing from its own history (i.e., the input’s
temporal modulations).

Thalamocortical implementation
A simplified model for a thalamocortical NPLL, which includes
the minimal number of basic components and the constrains of
known thalamocortical circuitry (White, 1989; Douglas and Mar-
tin, 1991; Lund and Yoshioka, 1991; Sherman and Guillery, 1996),
is depicted in Figure 6. Thalamocortical projections converge on
simple cells (SC, Hubel, 1996) in layer IV. These simple cells can be
inhibitory, as in Figure 6, or could drive inhibitory interneurons
(INH, Anderson et al., 1994). The inhibitory output project onto
oscillatory neurons (such as “chattering” or “fast rhythmic burst-
ing cells”; Gray and McCormick, 1996; Cardin et al., 2005; see also
Ahissar and Vaadia, 1990; Llinas et al., 1991; Silva et al., 1991),
which then close the loop by projecting onto the same thalamic
cells that drive the loop’s simple cells. The corticothalamic projec-
tion might be implemented directly by oscillatory neurons in layer
6 (Cardin et al., 2005) or mediated by other, corticothalamic neu-
rons, if chattering cells of layers 2/3 (Gray and McCormick, 1996)
or cortical interneurons (Cardin et al., 2009) function as the local
oscillators in specific circuits. In principle, the only component in
the loop whose implementation requires more than a single neu-
ron is the thalamic array. However, it is postulated that the entire
thalamocortical loop has a “width” of more than one neuron, i.e.,
every component is implemented by a group of coupled neurons.
Such an implementation is both more realistic and more efficient
(Ahissar, 1998).

Decoding requirements
In order to obtain temporal decoding, the following three basic
principles should be obeyed by a single loop (see Gardner, 1979):
(i) the output of the simple cells (Rout) should decrease as the

retino-cortical delay (tD) increases (Figure 6B, red curve) and
(ii) the period (inter-burst interval) of the oscillatory cells should
increase as the output of the simple cells increases (Figure 6B, blue
dashed curve); this change increases the delay between the reti-
nal output and the cortical oscillatory cells (tD; note that for this
function the ordinate describes the input, Rout, and the abscissa
describes the output, tD). The multiplication of the gains (slopes)
of the two transfer functions described in (i) and (ii), the so-called
open-loop gain (G), should thus be negative. In Figure 5D, an
optimal set of loop parameters (G=−1) was depicted, such that
the first correction of the oscillating period is the required one.
When these requirements are obeyed, the thalamocortical loop
is forced to “lock-in” to the retinal rhythm and to track its fluc-
tuations (for constrains on locking dynamics, see Ahissar, 1998).
The range of retinal frequencies for which these requirements are
met by a specific NPLL is called the working range of that NPLL.
The phase-locking machinery of NPLLs ensures that the pro-
cessing is done cycle-by-cycle, with every processing cycle being
matched to a specific FeyeM cycle. When an NPLL is locked to
the FeyeM, outputs of its cortical simple cells recode the retinal
frequency by spike count (per cycle), and preserve the temporal
phase relationships between different retinal outputs (see Cortical
Representations below). Furthermore, when an NPLL is locked to
the FeyeM, the retino-cortical delay will be directly related to the
inter-burst frequency of the retinal output (Figure 6B) both within
each cycle (instantaneous increased retinal frequency will advance
the next retinal spike while the next cortical oscillatory spike will
maintain its previously determined prediction) and across cycles
(due to the negative feedback nature of the loop which will enforce
less inhibition on the cortical oscillatory cells and thus reduced
Rout and thus increased tD; Ahissar, 1998).

As long as a neuronal loop obeys the requirements mentioned
above, its exact implementation is not important, and could vary
among different species or even among different individuals. For
example, the circuit can be simple in cases where simple cells
are by themselves inhibitory or when the oscillatory neurons
project directly to the thalamus (as in Figure 6; Cardin et al.,
2005), or it could be more complex if additional neurons relay
information between the basic components, for example, between
thalamocortical neurons and simple cells (Blasdel and Fitzpatrick,
1984).

Phase locking
In our model, the cortical oscillations produce internal expecta-
tions with regard to the timing of the next retinal output. These
temporal expectations are manifested by the output of the oscilla-
tory neurons,and thus also by the onset time of the corticothalamic
gating signal (blue rectangles in Figure 6 inset and in Figure 5D).
For every given retinal location, and its corresponding thalamo-
cortical loop, deviations of retinal output from its expected timing
are detected by thalamic“relay”neurons (i.e., PDs), affect the spike
count of simple cells, and thereby, re-adjust the period of the sub-
sequent cortical oscillation cycle. For example, assume that the
input period changes from 80 to 77.5 ms, as is the case with the
moving bar in Figures 5A,B. Since the cortical expectation for the
second cycle in Figure 5 is still 80 ms, the phase difference between
the input (Figure 5D, black spikes) and the cortical oscillations
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(blue rectangles) will increase (from 7.5 to 10 ms; second cycle
in Figure 5D). Consequently the output of the simple cell(s) will
decrease (from three to two spikes; Figure 5E), inhibition of oscil-
latory neurons will decrease, and therefore, the cortical oscillating
period of the next cycle will decrease, thus tracking the change
occurring at the input. In this example, optimal loop parame-
ters (G=−1) were depicted such that the first correction of the
oscillating period is the required one. Thus the loop is already
stabilized at its new working point, one cycle after the change
in the input occurred (i.e., at period= 77.5 ms, delay= 10 ms,
output= 2 spike/cycle).

With less optimal parameters, complete stabilization might
require more than a single cycle (Ahissar, 1998). In any case, if
the retinal frequency is within the working range of the loop,
the cortical period is forced to eventually converge to the retinal
period, since (due to the negative feedback) the thalamic “error
signal” will always drive the cortical oscillations in the direc-
tion that will tend to cancel the “error.” Note that the stabilized
output spike count is determined by the inter-burst frequency;
for decreasing retinal periods (increasing frequencies), the loop
working point (Figure 6B) will move to the right, toward longer
retino-cortical delays. Thus, when the frequency of FeyeM is con-
tinuously changing, as is the case with natural viewing, cortical
oscillatory frequency will track those changes with a lag of at
least one FeyeM cycle, where in each cycle the tracking error is
reported by the output of simple cells. The emergence of phase-
locking from the transfer functions of the loop is described in the
following sections.

Cortical oscillations
Cortical oscillations can track input frequencies if their frequencies
(i) are in the range of the input frequencies, and (ii) can be mod-
ulated by local cortical inputs (Cortical Oscillations in Appendix
1, Eq. 4). Both requirements are fulfilled by mammalian cortical
oscillations. The spectral densities of human FeyeM and neuronal
oscillations in the monkey visual cortex (Eckhorn, 1994) exhibit a
striking similarity, both emphasize alpha and gamma modes (see
Ahissar and Arieli, 2001). Oscillations at frequency ranges that
match those of FeyeM had been observed in the visual cortex of
cats, ferrets, and monkeys (Gray et al., 1989; Eckhorn, 1994; Gray
and McCormick, 1996; Brumberg et al., 2000; Cardin et al., 2005;
Bosman et al., 2009). The frequencies of visual cortical oscillations
can be controlled locally (Gray and McCormick, 1996; Brumberg
et al., 2000; Cardin et al., 2005) and can be modulated by and
locked to external stimuli (Eckhorn et al., 1993; Gray and Viana
Di Prisco, 1997; Cardin et al., 2005; Bosman et al., 2009), as is the
case for other modalities (for review, see Ahissar, 1998).

Besides frequency ranges, the main difference observed between
visual and other cortical oscillations is that visual oscillations have
not been observed so far in the absence of visual stimuli. This
might indicate that expression of cortical oscillations (e.g., trans-
lation of sub-threshold oscillations to spike activity) requires an
additional excitatory input (Gray and McCormick, 1996; Cardin
et al., 2005). Such an input (“M” in Figure 6) can be provided by
an internal preparatory signal or an afferent stimulus-driven sig-
nal, and be shaped during development and by learning (Ahissar
et al., 1998).

Thalamic phase detection
Thalamocortical neurons of NPLL are required to generate an
output whose spike count decreases as the retino-cortical delay
increases. This function is easily implemented by corticothalamic
gating (Figure 6), in which thalamic transfer strongly depends on
the cortical signal (Diamond et al., 1992; McCormick and Bal,
1994; Sherman and Guillery, 1996). In this gating mode, thalamic
neurons fire only, or mostly, when retinal and cortical inputs over-
lap. When thalamic neurons are in this mode, and their cortical
input is periodic, the result is periodic gating. At each oscillation
cycle, thalamic output would be maximal when the two inputs
fully overlap, and will gradually decrease as the delay increases
until no overlap occurs (Thalamic Phase Detection in Appendix 1,
Eq. 5). Thus, a computation of the phase difference between retinal
and cortical activities and its recoding by spike counts occurs at
each oscillation cycle. Operation of the PD is described schemat-
ically in Figures 5 and 6, in which the FF and feedback signals
are illustrated as a spike burst and a rectangular function, respec-
tively. The activity symbols in Figures 5 and 6 (FF-spike burst;
feedback-a rectangular function) are used for illustrative purposes
only; both signals are conveyed by discrete spikes, which in turn
induce continuous post-synaptic potentials in their post-synaptic
PD cells. The mechanism of thalamic phase detection resembles
that of coincidence detection suggested for the auditory brain-
stem (Carr and Konishi, 1990), but with a wider response range;
the response of thalamic phase detection decreases gradually as
the phase difference increases while that of coincidence detectors
decreases sharply. The gradual response profile is essential for the
operation of the NPLL (see Phase Locking above).

Loop operation
In each oscillation cycle, loop variables depend on the input and
on their values during the previous cycle (Appendix 1, Eqs 6
and 7). Thus, for any given constant input, the loop variables,
such as simple-cell spike count and oscillator phase, will continue
changing until frequency locking will be achieved. For each input
frequency, the loop will stabilize on a different set point, i.e., dif-
ferent set of variable values (Appendix 1, Eqs 8–10). When the
frequency of the input is not constant, cortical oscillations will
track the changes in the input periodicity, aiming at (though never
achieving) a new set point upon each change (Appendix 1, Eq. 11).

The dynamics of the loop following changes in FeyeM fre-
quency are similar to those occurring following external motion
(Figure 5, see Phase Locking above). Upon increased FeyeM fre-
quency, the FF signals (of all NPLLs) arrive earlier than expected,
while the gating signals appear at the time corresponding to the on-
going expectation. The result is a decreased overlap in the thalamus
(e.g., Figure 5D third row), thus decreased SC outputs, decreased
inhibition on the oscillatory neurons, and thus increased oscilla-
tory frequency. A similar process, with opposite signs, occurs with
decreased FeyeM frequency.

Thalamic gating is not operational following sustained silent
periods (McCormick and Bal, 1994; Sherman and Guillery, 1996).
Therefore, when stimulating paralyzed eyes at low frequencies
(<2 Hz), thalamocortical neurons would often be activated by reti-
nal outputs even in the absence of cortical activity. If a burst of
stimuli follows the first stimulus, a locking-in process is expected
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to be initiated in the corresponding NPLLs (see Figure 9 in Sosnik
et al., 2001).

Cortical representations
Retinal periodicities are translated into latencies and spike counts
of cortical simple cells (Figure 6B). Since the external velocity (Vx)
is encoded at the retina by a frequency shift, it is represented in
the cortex by a decrement (Figure 5E) or increment in the num-
ber of spikes per cycle from the corresponding output of simple
cells. Note that the coding of retinal velocity is differential: local
motion is coded by the difference between the spike counts of
neighboring simple cells. Thus, although absolute values of spike
counts can vary with variations in FeyeM, the local difference due
to external local motion will remain. In fact, differential coding
applies to FeyeM-induced temporal coding in general. Image shape
and texture, as already mentioned, are also coded differentially in
this scheme, and are represented by temporal phase relationships
among neighboring simple cells (shape, Figure 5E, first cycle; Cor-
tical Representations in Appendix 1), and by relative intensities of
intra-burst firing (texture; not shown).

PROCESSING OF NPLL OUTPUTS BY COMPLEX CELLS
Central processing of 2D details, as that of depth cues, is often
described in terms of spatiotemporal filtering (Barlow, 1979; Fahle
and Poggio, 1981; Burr et al., 1986; DeAngelis et al., 1993; Mor-
gan and Castet, 1995). This description does not specify the actual
processing carried by central circuits but indicates that the pro-
cessing should be carried over both dimensions interactively. The
NPLL circuits suggested here can be described as adaptive tem-
poral filters, whose center frequency follows that of FeyeM. The
outputs of these NPLLs, i.e., the outputs of cortical simple cells, are
processed by complex cells across space. Adjacent simple cells feed
the decoded temporal information (now in spike count code) to
individual complex cells. Complex cells process (usually integrate)
these inputs across the spatial dimension. The exact computation
performed by complex cells, and their feedback interactions with
thalamocortical NPLLs, are not yet clear. In any case, according to
the scheme presented here, thalamocortical NPLLs are responsi-
ble for the temporal component, whereas cortical complex cells,
interneurons, and the associated circuitry are part of the spatial
component, of the implied spatiotemporal central processors of
visual inputs.

PHASE ENCODING AND RECODING WITH NATURAL FeyeM
Although typically cyclic, FeyeM are not purely periodic. Trajec-
tories of FeyeM are strongly modulated in both amplitude and
frequency (see Examples of Human FeyeM in Appendix 2). Since,
the induced eye movement is the same for the entire retina, the
nature of relative time coding, i.e., coding spatial offsets by rela-
tive temporal delays across neighboring cells, should not depend
crucially on the exact pattern of FeyeM. We tested this prediction
using computer simulations. Three gray images with patterned
left edges (Figure 7B, images 1–3) were scanned by a small reti-
nal field that was moved according to the FeyeM recorded in a
human subject (Figure 7A and Examples of Human FeyeM in
Appendix 2). Ganglion cell firings were determined at a resolution
of 1 ms (Meister and Berry, 1999; Reinagel and Reid, 2000) using

a simple threshold crossing mechanism; note that an addition of
integration-based mechanisms, while not expected to affect tim-
ing reliability and thus the relative temporal code, are expected
to affect the absolute firing times of ganglion cells. The FF sig-
nals were conveyed by OFF-centered subfields of foveal simple
cells (sRFs) of 4× 1 (horizontal) and 1× 4 (vertical) receptors,
1 arcmin each, flanked by symmetric inhibitory fields (1 receptor
wide, Figure 2D in Hubel and Wiesel, 1962). Each sRF fed a “thal-
amocortical” loop that contained a RCO and SC and obeyed the
NPLL equations (Eqs 4 and 5 in Appendix 1).

The dynamics of the simulated responses were analyzed in rela-
tion to FeyeM cycles. In each cycle, delay to the first spike (del)
and total spike count (sp) were calculated. The vertical sRFs were
blind to the fine offsets of the image’s left edge. The delays and
spike counts conveyed by such sRFs (Figure 7B depicts one col-
umn of vertical sRFs) were almost identical for the three images.
In contrast, horizontal sRFs exhibited different dynamics for each
edge, resulting in a unique temporal representation during the 3rd
cycle. The images were represented by the relative firing times of
four horizontal sRFs (sRF #7–10 in Figure 7B, enlarged in a sep-
arate panel): for image 1, sRFs 7 and 8 exhibited relatively short
delays from cycle onset while sRFs #9 and 10 exhibited relatively
long delays (short-short-long-long). In a similar manner, images 2
and 3 were represented by short-long-short-long, and short-long-
long-short delay patterns, respectively. These representations were
preserved at the outputs of the NPLLs (Figure 7B, SC horizontal).

The dynamics of spike generation in relevant horizontal NPLLs
are depicted in Figure 8. The four coding NPLLs (#7–10) received
sRF inputs that allowed phase-locking to the horizontal FeyeM. As
a result, the RCO bursts (red vertical lines) were phase-locked to
the FeyeM cycle onsets (dotted green vertical lines). This resulted
in a reduced frequency in the RCOs of these NPPLs: from 4 to
∼3 cycles in the time window depicted. RCO locking to FeyeM
enabled the translation of sRF firings (magenta vertical lines) to
SC firings (blue vertical lines). The other four NPLLs fired out of
phase with the input and thus blocked their corresponding sRF
signals.

These computer simulations demonstrate the validity of tem-
poral encoding of shape by FeyeM, the superiority of temporal
coding along over rate coding across the elongated axes of sRFs for
fine spatial details, and the ability of NPLLs to phase-lock to retinal
outputs, and thus recode shape by relative time coding, with nat-
ural FeyeM. These simulations do not address encoding-decoding
of object motion or texture.

HOW WE SEE A STABLE WORLD VIA TREMBLING EYES
One long-standing unresolved puzzle in vision is: how come the
world appears stable if our eyes move all the time? The answer
to this puzzle is surprisingly simple. This puzzle exists only if one
assumes that FeyeM are not part of the visual mechanism. For
example, if the visual system would read a spatial retinal code,
this code would move across the retina according to the trajec-
tory of FeyeM. In that case, some mechanisms in the brain should
correct for eye movements, and it is totally unclear what mech-
anism could do that. However, if vision is done via FeyeM, no
correction is needed. These very movements sample the informa-
tion in; this is the way the visual system acquires information,
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FIGURE 7 | Simulation of phase encoding and recoding of a
stationary image with human FeyeM. (A) FeyeM recorded from a
human subject fixating on a cross (same example as in Figure 1A) were
used to shift a stationary image over a retinal array of 14×26 OFF
photoreceptors (left panel, retinal movement trajectory plotted in red;
starting point circled in green). FeyeM cycle onsets were defined as the
minima of a low-pass (cutoff frequency: 40 Hz) version of the horizontal
trace (right panel, dotted vertical green lines). Size of all retinal RFs was

set arbitrarily to 2′. (B) Dynamics of delay (del) and spike count (sp)
across the three cycles of the FeyeM epoch in three columns of cells
(vertical sRF, horizontal sRF and horizontal SC) and for three external
images [rows 1–3, left edges of the images are depicted in the left panel
of each row, the rest of the image was identical to the one in (A)]. Sp
responses in vertical sRFs (mean over the three cycles) and del
responses at the third cycle of sRFs and SCs are enlarged for the
relevant cells. FeyeM data courtesy of Dr. Moshe Fried.

exactly as the tactual system acquires information by moving the
fingers (or the whiskers in rodents). As the system is tuned for
moving its sensors to acquire information, there should be noth-
ing in the system that interprets a coherent movement of the entire
sensory field as a movement of the world. Information about the
actual movement of the eye is continuously conveyed to the brain
by the spatiotemporal activation of horizontal and vertical reti-
nal sRFs (see Encoding of FeyeM Direction and Resolving Image
Details by sRF Structure: 1D Vision above). Interference with this
spatiotemporal pattern contributes to motion illusions such as
autokinesis and induced movement (Poletti et al., 2010), suggest-
ing their inclusion in the seeing loop. A prediction of seeing via

FeyeM is thus that small or slow FeyeM-like movements of the
entire visual field should not be perceived [see prediction (ii)
below].

THE VISUAL MOTOR-SENSORY LOOP
Optimal functioning of NPLLs requires their operation within a
motor-sensory feedback loop (Ahissar and Vaadia, 1990; Ahissar,
1998). Schematically, the loop level containing the NPLLs can be
described as is shown in Figure 9. The movements of the eye
[Ve(t )] and external objects [Vx(t )] induce movements of the
image on the retina [Vi(t )] which generate afferent visual sig-
nals (green arrows). The afferent signals are filtered along their
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FIGURE 8 | Dynamics of the encoding-decoding process. The spike trains
of RCO (red vertical lines), SC (blue vertical lines), and sRF (magenta vertical
lines) units are shown for the simulations presented in Figure 7. The
horizontal trace of FeyeM is depicted in green. Vertical dotted green lines

mark cycle onset. Eight units (y =4–11) are depicted along one column
(x =10). Conduction delays were simulated as zero. Initial RCO frequency
was 0.8 of the mean horizontal FeyeM frequency (12.3 Hz) and the open-loop
gain was −5.

afferent pathway (IFs) and fed into thalamocortical NPLLs. The
loop contains many NPLLs, each tuned to a different intrinsic fre-
quency and thus capable of decoding visual information carried by
a different range of temporal frequencies. Available data on thal-
amocortical visual oscillations suggest that this bank of NPLLs
span the range of frequencies between 1 and 100 Hz, with some
tendency for frequencies in the δ, α, and γ ranges (Gray et al., 1989;
Eckhorn, 1994; Gray and McCormick, 1996; Brumberg et al., 2000;
Cardin et al., 2005; Bosman et al., 2009). The outputs of the NPLLs
drive circuits that decode shape, texture and local motion infor-
mation, and in addition close the motor-sensory loop by driving
motor circuits controlling eye velocity. This entire motor-sensory
loop functions as a negative feedback loop; a change in eye velocity
induces a change in NPLLs outputs [Rout(t )] that generates motor
signals that oppose the change in eye velocity (insets of transfer
functions). By monitoring the mean output of NPLLs and mod-
ifying eye velocity accordingly such a negative feedback loop can
maintain the mean temporal frequency of the retinal output in a
desired range (The Motor-Sensory Loop in Appendix 1).

At any given viewing period there should be one or sev-
eral NPLLs, out of the many NPLLs included in the bank,
that dominate the motor-sensory loop; the motor-sensory loop
functions to optimize the input for these NPLLs during that
period. Given the dynamics of frequency variation in FeyeM (e.g.,

Moller et al., 2002) it would make sense to assume a dynamic shift
of control from one pool of NPLLs to another every three or four
FeyeM cycles. With optimal tuning, such a period should be suf-
ficient for efficient temporal decoding (Figures 7 and 8; Ahissar,
1998). The mechanism that determines the shift of control within
the NPLLs bank is not yet clear, although a few potential principles
for its operation had been suggested (Ahissar, 1998).

DISCUSSION
Natural vision is a continuous process that, at any given moment,
has to deal with retinal activity that has been affected by recent
FeyeM and by optical blurring. FeyeM enforce temporal encod-
ing at the retina. Spikes of retinal outputs indicate times in
which image contrasts are crossed by moving receptors, much
like spikes of mechanoreceptors indicate times in which their
RF crosses a ridge. Such temporal encoding has a hyperacuity
resolution and is resistant to optical blurring. Metaphorically,
vision can be described as an active process in which the retina
“palpates” external objects like rat whiskers and human fingers
do. In both vision and touch, the sensory organs are mainly
activated when they encounter changes during their scanning
movements.

We suggest here a specific way in which the visual system could
decode temporally encoded retinal signals. The proposed active
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frequency of its corresponding NPLL; δ, α, γ, the frequency range
containing the intrinsic frequency of an NPLL. The major transfer
functions dominating the loop are described in the three insets: Rout is
the output firing rate of an NPLL.

decoding scheme involves cortical oscillations (which function as
“temporal rulers”) and thalamic phase comparators (which com-
pare input timing against the “ruler”). This scheme is consistent
with a large body of anatomical and physiological data. Although
the data supporting it are compelling, we do not claim that this
proposed scheme is the only possible decoding mechanism or that
there is a single decoding mechanism for retinal outputs. Several
such mechanisms are available to the visual system, and brains
must emphasize one or another mechanism, depending on the
visual stimulus, context, and previous experience. During natural
viewing,we suggest, the active decoding mechanism described here
plays a major role.

ADVANTAGES AND LIMITATIONS OF THE PROPOSED
ENCODING-DECODING SCHEME
The temporal encoding-decoding scheme presented here provides
a mechanism that is free from retinal smearing that would other-
wise be caused by FeyeM. According to this scheme, local hyper-
acuity is resistant to optical blurring because of the differential
nature of retinal temporal encoding. Utilization of the temporal
domain by the visual system allows information to be accumulated,
rather than averaged, during the entire fixation period. Further-
more, such utilization of temporal coding enables control of visual
resolution by simply controlling eye velocity (Saig et al., 2012);
such control can be used to adapt visual resolution to the spa-
tial frequencies of the external image. The decoding by intrinsic

oscillations provides an adaptive band-pass filtering mechanism
in which the center frequency of the filter tracks the dominant
frequency in the input. Note that this mechanism provides also a
“temporal extrapolation” mechanism, which can predict the time
in which a moving object will cross a given retinal RF by lock-
ing to the Doppler-shifted frequency (see Phase Locking above).
Finally, decoding by intrinsic oscillations provides internal tem-
poral markers that can facilitate serial processing of sequential
chunks of information, chunks that contain inter-related infor-
mation such as the information sampled in parallel across the
retina during each FeyeM cycle.

Accurate vision, if mediated by NPLLs, should require contin-
uous fixation. This is not inconsistent with common experience
and controlled studies indicating that visual acuity does improve
with longer fixational period (Riggs et al., 1953; Keesey, 1960;
Morgan et al., 1983; Packer and Williams, 1992). Following a stim-
ulus onset, visual accuracy is incrementally impaired, and starts
to improve again only after about 200 ms (Packer and Williams,
1992). Interestingly, image stabilization during the initial periods
of fixation facilitates accurate vision. Beyond ∼100 ms, stabiliza-
tion is detrimental and retinal motion is helpful for accurate
vision (Riggs et al., 1953). All these data are consistent with visual
accuracy being impaired by the smearing caused by FeyeM until
thalamocortical circuits lock-in and start to decode the temporally
encoded information. According to this scenario, it makes sense
for the visual system to ignore cortical outputs immediately after
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a saccade for periods up to about 200 ms, a phenomenon known
as saccadic suppression (Carpenter, 1988).

COMPLICATIONS AND CHALLENGES
To prevent aliasing (which occurs when the sampling frequency
is too close to the sampled frequency) temporal encoding should,
and probably does, rely on multiple frequencies (see Ahissar and
Arieli, 2001). During a fixation period, different frequencies can be
superimposed or can appear sequentially. Based on accumulated
data (Examples of Human FeyeM in Appendix 2 and published
FeyeM traces), our decoding example (Figure 5) assumed the
latter. However, when different FeyeM frequencies are superim-
posed, and head movements are added (Steinman and Levinson,
1990), the eye spatially drifts, and consequent cycles do not start at
the same retinal location. Thus, thalamocortical circuits should
be coupled such that locking information propagates through
neighboring circuits (Hoppensteadt and Izhikevich, 1998). In fact,
if coupling strengths can change, networks of NPLLs can learn
to process complex patterns of oscillatory inputs (Hoppensteadt
and Izhikevich, 2000), generated by various interactions of FeyeM
with external images. If efferent copies of FeyeM exist, they can
significantly facilitate this process (as well as facilitating initial
locking-in after saccades). In any case, the challenge of a continu-
ous processing of drifting retinal image is not unique to the present
model – it is a general challenge, which every model of vision must
deal with.

In fact, the complication induced by slow eye drifts can be bet-
ter handled by temporal decoders of the type presented here than
by spatial decoders that are based on cell identity. Since temporal
changes induced by eye drifts are common to the entire visual field,
they can be decoded by widely tuned NPLLs, low-pass integration
of NPLL outputs (Ahissar, 1998), or by other specialized networks
(e.g., Pitkow et al., 2007). Once decoded, this information can
be used to control the coupling between neighboring fine-tuned
NPLLs (Ahissar, 1998). Note that in any case this global drift, being
common to all NPLLs, should not distort the differential temporal
coding of local spatial details described here.

Reading out cortical differential representations should involve
lateral comparisons of outputs of simple cells, which could be
ambiguous if the response polarities (i.e., ON vs. OFF) of the com-
pared cells are not known. This problem is probably circumvented
by segregation of thalamocortical circuits to ON-center and OFF-
center clusters (McConnell and LeVay, 1984; Lund et al., 1985; Zahs
and Stryker, 1988); within each such cluster response timing can be
compared across cells with a remarkably high precision (Reinagel
and Reid, 2002). A similar segregation, according to color sen-
sitivity, is expected to circumvent ambiguities due to chromatic
aberration. Such segregation was observed in the human retina
(Roorda and Williams, 1999).

Cortical (and retinal) representations of external velocities are
unique only if the amplitude of the FeyeM is smaller than both the
sRF length and the external spatial periods. Otherwise, the trans-
formation is not unique; different combinations of external spatial
periods and external velocities could induce similar cortical spike
counts. When the sRF is longer than the external spatial periods,
aliasing problems are introduced, which cause additional ambi-
guities. The visual system could avoid such ambiguous coding

by relying on high frequency low-amplitude FeyeM for foveal
vision, and on FeyeM with increasing amplitudes (associated with
decreasing frequencies) for increasingly eccentric vision. The find-
ing that rod monochromat subjects, who lack foveal receptors,
exhibit large-amplitude-low-frequency nystagmus (Yarbus, 1967;
pp. 119–122) is in agreement with such a scheme, which sug-
gests that the lack of foveal reception eliminates the need for
high frequency FeyeM, leaving only low frequency FeyeM, which
become more coherent. Further support comes from stabilization
experiments that showed that when only large-amplitude move-
ments are compensated, only peripheral vision fades away (Gerrits,
1978).

During natural fixation, drift, and tremor movements are
often interrupted by brief microsaccades (see Introduction), which
bounce retinal RFs to new locations. Obviously, computations of
2D details by NPLLs cannot continue across microsaccades, and
should not include data acquired during microsaccades. Interest-
ingly, many cortical neurons respond either during microsaccades
(“saccade cells”) or during drift (“position/drift cells”) but not
during both (Snodderly et al., 2001). This indicates that the visual
system contains independent channels that enable independent
processing of visual information acquired during drift-tremor and
during microsaccades.

A GLOBAL VIEW ON THE PERCEPTUAL PROCESS
Every sensory system contains multiple motor-sensory loops that
together perceive components of the external world. Such loops
contain sub-cortical and cortical stations and pathways which
interact in complex ways (see for example the scheme of the
vibrissal motor-sensory system in Kleinfeld et al., 2006). The
encoding-decoding scheme proposed here belongs to an inter-
mediate level of the visual motor-sensory system; there are lower
loops that control more basic functions and higher loops that
interpret the outputs of the circuits described here. At all loop
levels, the processed sensory information affects next eye move-
ments which in turn affect future sensory inputs (Figure 9; see
also Uchida et al., 2006). The current paper focuses on the encod-
ing and decoding of temporally coded information generated
by FeyeM. However, it is assumed that this processing is one
component of the entire system of motor-sensory loops com-
posing the visual system, and that this entire system works in
coordination when perceiving external objects. Thus, the inter-
pretations of the outputs of the circuits described here are com-
ponents in the working of higher (and perhaps also lower) motor-
sensory visual loops. Another assumption is that at each level
there are many parallel circuits and loops that either compete
or cooperate in controlling motor functions, depending on the
conditions. According to this scheme, the chaotic-like patterns
of eye movements typically observed reflect superposition of
many competing and cooperating processes implemented along
many motor-sensory loops. How, eventually, a coherent percep-
tion emerges from such a seemingly messy process is of course
not yet clear. Still, the leading assumption here is that although
the process looks chaotic to an external observer, there is a
hidden order here as each of the operating loops is tuned to
process the outcome of its own controlled components of eye
movements.
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ARE PERIODIC FeyeM CRITICAL FOR THE PROPOSED SCHEME?
We describe the principles of the encoding-decoding scheme using
examples of periodic FeyeM (e.g., Figures 3 and 5). Still, pure peri-
odicity is not a critical requirement of the proposed scheme. First,
as explained in Section “Phase Locking ” above, and shown in the
Section “Loop Dynamics” in Appendix 1, the decoding circuit can
track changes in the input frequency up to a certain limit (see
also Ahissar, 1998; Zacksenhouse and Ahissar, 2006). Second, the
elongated structure of sRF allows also large tolerance for ampli-
tude modulations: when the amplitude of the FeyeM changes, the
temporal information is not affected; the only changes are in the
number of sRFs that represent the stimulus and in the number of
spikes conveyed by the FF signals. Since these changes are global to
the entire retina, relative coding will hardly be affected. Similarly,
the component of FeyeM that is perpendicular to the elongated
axis of the sRF does not impair temporal coding. In fact, this
perpendicular drift allows scanning of many different alignments
between sRFs and a given spatial offset in the image. Thirdly, we
propose that every decoding loop processes sensory information in
a relatively narrow band (about one octave around its intrinsic fre-
quency), and ignores fluctuations outside this band (see The Visual
Motor-Sensory Loop above). The simulations with natural FeyeM
presented in Figures 7 and 8, and simulations with amplitude and
frequency modulated synthetic FeyeM (not shown) demonstrate
that temporal coding functions fairly well with repetitive FeyeM
that deviate significantly from pure periodicity.

CONSISTENCY WITH OTHER RELEVANT EXPERIMENTAL DATA
Electrophysiological and anatomical:

• In some conditions, cortical alpha oscillations correlate with
ocular oscillations (Lippold, 1973). In other conditions, no or
small correlation is observed (Butler and Glass, 1970). Our
hypothesis assumes that the ocular and cortical oscillatory
sources are independent sources that become coupled during
vision. Accordingly, the cortical alpha rhythm usually indicates
an idling state (in which cortical oscillators phase-lock to each
other), a state that disappears when the eyes scan external pat-
terns [and each oscillator locks to the temporal pattern of its
specific input (Ahissar and Vaadia, 1990); recent fMRI data sup-
port cortical idling during alpha spindles (Feige et al., 2005)].
During such scanning, correlations between FeyeM and local
cortical activity are expected, although they should not nec-
essarily be periodic, and should not necessarily be correlated
across the cortex.
• Visual cortical activity can be locked to a periodic visual stimu-

lus (a phenomenon called “photic driving,” Walter and Walter,
1949) in a fashion supporting a resonance-like process between
the visual stimulus and multiple local oscillators (Tyler et al.,
1978; Fedotchev et al., 1990; Basar et al., 1991; Schurmann and
Basar, 1994). The model suggested here behaves exactly in this
manner – a population of local oscillators resonates with the
temporal rhythm of the retinal signal while decoding phase
variations.
• Visual cortical activity can remain “locked” to the stimulus fre-

quency after the cessation of the stimulus (Narici et al., 1987;
Sakamoto et al., 1993). This “temporal memory” requires a

closed loop operation, either at the cellular level, or at the circuit
level as suggested by the NPLL model.
• Retinal, thalamic, and cortical neurons exhibit phase-locked

activity during stimulus presentations, during which cortical
neurons often phase-lead thalamic neurons (Castelo-Branco
et al., 1998), as predicted by the NPLL model.
• Frequencies of cortical oscillations change when stimulus veloc-

ity changes (Eckhorn et al., 1993; Gray and Viana Di Prisco,
1997), as predicted by the Doppler-shift of the sampling
frequency.
• Retinal spike times convey more visual information than spike

counts (Berry et al., 1997).
• Thalamic transfer and timing depends on cortical feedback

(reviewed in Rauschecker, 1998).
• Responses of cat retinal ganglion cells to tiny (= cone separa-

tion) retinal motion are locked to movement onset (Shapley
and Victor, 1986).

Psychophysical:

• Temporal aliasing occurs during daylight vision (Purves et al.,
1996; Pakarian and Yasamy, 2003; Andrews and Purves, 2005;
VanRullen, 2006), which indicates a sampling process in time.
• Metacontrast: consequent non-overlapping visual stimuli can-

not be perceived in isolation for temporal intervals smaller
than 50–150 ms (Bachmann, 1997; Ogmen et al., 2003). This
is consistent with an alpha rhythm based sampling process.
• Flicker fusion is not integrated between the eyes (Andrews

et al., 1996), which indicates that temporal processing is monoc-
ular, as required by our proposed scheme, due to lack of
synchronization of FeyeM between the two eyes.
• Movement processing is often based on dot elements rather

than on line elements, i.e., on two-dimensional discontinuities
such as corners, intersections, and endpoints of contours (Rubin
et al., 1995; Caudek and Rubin, 2001; Pack et al., 2003b). This is
consistent in principle with processing along the elongated axis
of sRFs. The perception of a moving dot exhibits sensitivity and
attributes that are similar to those exhibited by perception of
solid lines (Westheimer and Wehrhahn, 1994).
• Motion smear disappears once motion is perceived (Burr, 1980),

possibly due to locking-in of thalamocortical loops. During
apparent motion, temporal delays are perceived as spatial offsets
(Burr, 1979; Fahle and Poggio, 1981), as suggested here.
• In some experiments, 2D acuity was found to be limited by

temporal differential delays, not by spatial offsets or veloci-
ties (Carney et al., 1995). In other experiments, spatial offset
appeared to be the limiting variable. Threshold temporal delays
are in the order of 1 ms (Burr, 1979; Fahle and Poggio, 1981;
Morgan and Watt, 1983; Carney et al., 1995), which correspond
to the temporal accuracy of visual signals up to the thalamic
level (Levick et al., 1972; Lee et al., 1981; Berry et al., 1997).
Moreover, both acuity thresholds and temporal uncertainties
had been shown to follow power-law functions with similar
exponents (Wilson, 1986; Berry et al., 1997; Verdon-Roe et al.,
2006). These findings are consistent with the scheme suggested
here of a serial temporal-spatial processing implemented by
thalamocortical and corticocortical circuits, respectively.
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• Hyperacuity thresholds are not affected by retinal image degra-
dation (Williams et al., 1984), indicating that relative resolution
does not depend on accumulation of firing rates over space.
• Temporal asynchrony interferes with Vernier acuity. Judgment

of vertical alignment of two dots is impaired if the two dots
are not presented synchronously (Wehrhahn and Westheimer,
1993).
• Elimination of retinal motion induced by FeyeM selectively

impairs the discrimination of fine spatial details, while leaving
the discrimination of coarse spatial details unaffected (Rucci
et al., 2007).
• Humans show power-law dependency on the stimulus contrast

in various accuracy and hyper-accuracy tasks, with exponents
similar to those observed at the retina (−0.5 to −1; Wilson,
1986; Verdon-Roe et al., 2006); the power-law dependency holds
up to 100% contrast. These dependencies are similar to the
dependency of retinal jitter on stimulus contrast (Berry et al.,
1997) which supports a dependency of visual acuity on retinal
temporal jitter.
• EEG recordings reveal that (i) neuronal oscillations code sen-

sory information relevant for visual perception, (ii) frequency,
phase, and amplitude play differential roles in coding behav-
iorally relevant information in the brain, and (iii) phase contain
higher information than power (Schyns et al., 2011).

Alleged inconsistencies with relevant experimental data:

• Keesey (1960) and others found that stabilization does not
impair spatial acuity. However, it turned out that images prob-
ably cannot be fully stabilized (Barlow, 1963; Steinman and
Levinson, 1990) and that acuity is gradually impaired as stabi-
lization improves (Kelly, 1979). With good stabilization, and
conditions of natural viewing, visual discrimination is con-
sistently and significantly impaired (Rucci and Desbordes,
2003).
• Vernier acuity of 2 ms flashed stimuli is as good as that of longer

stimuli provided that the intensity× duration product is con-
stant (Hadani et al., 1984). This could imply that (i) temporal
information, and FeyeM in general, is not required for detecting
fine offsets when flashed on the retina, or (ii) temporal infor-
mation can be extracted from afterimages that are moved across
non-homogeneous backgrounds. However, since the thresholds
obtained in the “constant energy” condition were higher than
the minimal thresholds obtained (during long durations) by
the two subjects that were tested, and since one of them had a
threshold >10,” we find these results not conclusive. In any case,
detection of offsets in flashed stimuli utilizes visual mechanisms
in a non-natural way. Naturally, visual mechanisms must deal
with continuous, non-flashed, stimuli which are traversed by the
eyes. That hyper-accurate detection is also possible with some
artificial conditions is of course possible.

PREDICTIONS FOR ACTIVE VISION
Critical for temporal encoding at the retina:

(i) Small or slow movements (with amplitudes or velocities
smaller than those of FeyeM) of the entire image should not

impair local (hyper) acuity. However, spatially-non-coherent
movements of details of the image, even if their average
locations are kept constant, should.

(ii) Small or slow movements (with amplitudes or velocities
smaller than those of FeyeM) of the entire visual field should
not be perceived, while spatially-non-coherent movements
should.

(iii) Synchronous temporal fluctuations of image intensity should
not impair local acuity, while asynchronous fluctuations of
details of the image, even if their locations are kept constant,
should.

(iv) Retinal latencies depend on contrast (Gawne et al., 1996).
Thus, contrast differences should be perceived as spatial off-
sets also with stationary stimuli, and not only with mov-
ing stimuli (e.g., Williams and Lit, 1983). This of course
depends on the direction of the FeyeM during the view-
ing epoch. For example, if one line of a vernier is pre-
sented with a higher contrast, it should be perceived as rel-
atively positioned more leftward when the eye moves to the
right.

Critical for decoding by thalamocortical NPLLs:

(v) Cortical simple cells should represent local spatial-phase
relationships (i.e., fine determinants of shape and texture)
by temporal phase relationships, and relative velocities by
relative spike counts.

(vi) When the temporal frequency of the retinal output increases,
retino-cortical delays should increase, and the spike counts
of simple cells should decrease.

Non-critical:

(vii) If FeyeM can be centrally controlled (Shakhnovich, 1977;
Coakley, 1983; Eizenman et al., 1985), subjects should mod-
ify the frequencies, amplitudes, and/or velocities of their
FeyeM according to the spatial frequency content of the
image.

(viii) Such adaptations should occur during long fixations
(>200 ms), and are expected to stabilize at conditions that
produce temporal frequencies (at the retinal output) within
the alpha or gamma ranges, which are probably preferred
by thalamocortical loops.

(ix) Opening eyes in full darkness, or against a uniform
image, should not desynchronize cortical EEG. Corti-
cal EEG is expected to desynchronize only when view-
ing a patterned image, in which case different corti-
cal oscillators are expected to track different temporal
patterns.

(x) End stopping: end-stopped cells are tuned for bar lengths:
they are excited by short bars and are being gradually
inhibited as the length of the bar increases (see, e.g., Bolz
and Gilbert, 1986). This inhibition is thought to orig-
inate in oriented cortical cells. If these inhibitory ori-
ented cells are simple cells that are involved in NPLLs
(Figure 6), their output would depend on the frequency.
Thus, when retino-cortical phase-locking is maintained,
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e.g., during natural viewing, as the input temporal fre-
quency increases toward the cortical intrinsic idle frequency,
end-stopped cells are expected to gradually become less
inhibited, and the latency of their inhibition to gradually
increase.

(xi) Snodderly’s “position/drift cells” (Snodderly et al., 2001)
should be sensitive to 2D spatial relationships and motion
velocity whereas “saccade cells” should be sensitive to
binocular disparities.

Additional predictions are described in Ahissar (1998).
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APPENDIX 1
TEMPORAL ENCODING
A given spatial offset in a stationary image, ∆x, is translated to a
neuronal temporal delay, ∆t, by the velocity of the eye in the same
direction, V eye, such that:

∆t = ∆x/Veye, (A1)

for clarity, we ignore here the dependence of these variables on
time.

RETINAL FREQUENCIES AND ENCODING OF MOTION
Determination of retinal frequencies depends on the relationship
between the texture of the image (Sx, spatial period) and the peak-
to-peak amplitude of FeyeM (Aeye). We will limit our discussion
to cases in which the amplitude of eye movement is smaller than
a single cycle of contrast change (Sx > Aeye). In these cases, the
retinal periodicity (I r) follows the periodicity of the FeyeM (I eye):

Ir = Ieye (A2)

Note that due to the dependency of Aeye on I eye (see Ahissar and
Arieli, 2001), different spatial periods will fulfill the above criterion
(Sx > Aeye) at different FeyeM frequencies (see also Discussion:
Complications and Challenges).

With moving images, the resulting retinal period for a given
sRF will be:

Ir = Ieye ·
Veye

Veye − Vx
, for |Vx| <

∣∣Veye
∣∣ (A3)

where V eye represents the velocity of the eye in the protraction
direction (approximated to be constant here), and V x is the exter-
nal velocity in the same direction (Figure 3D). We will not deal
here with |V x|≥ |V eye|.

CORTICAL OSCILLATIONS
We use a linear version of the equation presented by Perkel
et al. (1964) to describe the control of neuronal oscillations via
inhibitory cells.

Io(n) = Tc + γRout(n − 1) (A4)

where I o(n) is the oscillation period at cycle n, Rout(n−1) is the
number of spikes driving the inhibitory neurons during cycle
n−1, and T c is the intrinsic oscillation period (i.e., the oscillation
period when Rout= 0). The constant γ, whose units are ms/spikes,
determines the gain of this control.

THALAMIC PHASE DETECTION
In the gating mode, thalamic neurons fire only when the retinal
and cortical inputs overlap. Thalamic output would be maximal
when the two inputs fully overlap (τD= 0, where τD is the delay
between the two inputs), and will gradually decrease as the delay
increases until no overlap occurs. If the gradual decrease is linear,
the thalamic PD can be approximated as:

Rout(n) =

{
R − ατD(n), for R > ατD(n)

0, otherwise
(A5)

where Rout(n) is the number of spikes generated by the PD during
cycle n, R is the maximal number of spikes that can be generated
by the PD [when τD(n)= 0], and α is the gain of this function.
R, and possibly also α, depend on the contrast; this dependency is
ignored in the present discussion. The output signal is expressed
in units of spike count, and thus cannot be assigned non-integer
values; for clarity, this limitation is omitted from the equation.

LOOP OPERATION
The retino-cortical delay at cycle n, τD(n), depends on the delay
at cycle n−1 and on the difference between the retinal [I r(n)] and
cortical [I o(n)] periods at cycle n:

τD(n) = τD(n − 1)+ Io(n)− Ir (n) (A6)

This equation shows that the only condition in which
τD(n)= τD(n−1), namely that the loop is at a steady-state, is when
the oscillation period equals the retinal period:

Io(n) = Ir(n) (A7)

The combination of Eqs 4, 5, and 7 reveals the dependency of the
set point, i.e., the values of τD and Rout, on the input frequency:

τD =
R

α
−

Tc − Ir

G
, G = −α γ (A8)

where G is the “open-loop gain,” which equals the multiplica-
tion of the local gains along the loop. Rout at steady-state can be
determined by combining Eqs 5 and 8:

Rout =
Ir − Tc

γ
(A9)

Thus, Rout directly represents I r, and thus also V x (from Eqs 3 and
9, at steady-state):

γRout = Ir − Tc =

[
(Ieye − Tc )Veye + Tc Vx

Veye − Vx

]
=

Ieye − Tc + IeyeVx

Veye − Vx
, for|Vx | < |Veye|

(A10)

If V x= 0, Rout represents the frequency of eye movements, or
more accurately, the deviation of the eye frequency (1/I eye) from
the NPLL’s intrinsic frequency (1/T c). If |V x| < |V eye|, and the
image component is moving in the protraction direction, V x is
positive and Rout will increase (compared to a stationary image).
If it is moving in the retraction direction, as in Figure 5A, Rout

will decrease, as in Figure 5E. The dependency of Rout on V x, for
various V eye values, is described in Dependency of Rout on Image
Velocity in Appendix 2.

The loop can converge on a limited set of input frequencies; a
set termed “the working range”. The working range depends on
G: it is empty for G ≥ 0, and increases as G becomes more and
more negative. Thus, for all loops in which the working range is
not empty G < 0 and τD decreases with retinal periodicity (I r; see
Eq. 8), or increases with retinal frequency (1/I r; Figure 6B).
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LOOP DYNAMICS
The dynamics of the loop while tracking can be revealed by
combining Eqs 4–6:

τD(n) = Tc+γR + (1+ G)τD(n − 1)− Ir (n) (A11)

The only case in which τD(n) does not depend on τD(n−1), i.e.,
on the history of the loop, is when G=−1. In this latter case,
the loop can track changes in the input periodicity with a delay
of only a single cycle (see the case depicted in Figure 5D). As G
diverges from −1, tracking becomes less and less accurate, since
convergence to a fix point takes more and more cycles (Ahissar,
1998).

CORTICAL REPRESENTATIONS
Retinal periodicities [I r(n)] are translated into latencies [τD(n);
Eqs 8 and 11] and spike counts [Rout(n); Eq. 10] of cortical sim-
ple cells (Figure 6B). The steady-state cortical representations are
described by Eqs 8 and 9. These cortical representations should
be valid at the input layers of V 1, and of course might be further
transformed in successive processing levels.

These cortical (and retinal) representations depend on the
ratios between the amplitude of the FeyeM (Aeye), the sRF length
(LRF), and the external spatial periods (Sx= 1/spatial frequency).
In this paper we focused on cases in which Aeye < Sx and LRF < Sx.
In these cases, external velocities (V x) are represented by cortical
spike counts. In cases in which Aeye > Sx, the transformation is not
unique; different combinations of Sx and V x could induce similar
spike counts. In cases in which LRF > Sx, aliasing problems are
introduced, which cause additional ambiguities. There is probably
enough information available to the visual system to resolve all
these ambiguities by utilizing intra-burst frequencies, lateral com-
parisons, and orientations of sRFs. Alternatively, the visual system
could avoid this ambiguous coding by relying only on those thal-
amocortical circuits for which, in a given epoch, Aeye≈ LRF < Sx

(see Discussion: Complications and challenges).

THE MOTOR-SENSORY LOOP
The visual motor-sensory loop (Figure 9) controls the input peri-
odicity by monitoring the output of NPLLs and modifying eye
velocity accordingly. The loop equations are:

Ve(t ) = gv (Rmax − Rdc(t ))+ Vother (A12)

Rdc(t ) = gpll (Ir (t )− Tc ) (A13)

where V e(t ) is the velocity of the eye in one dimension (e.g., hori-
zontal), g pll and g v are the NPLL’s and velocity controller’s transfer
functions, respectively (Figure 9), Ir(t ) is the inter-spike interval
of the retinal output, T c is the NPLL’s intrinsic period, Rdc(t ) is
the mean integrated output of NPLLs, Rmax is the maximal pos-
sible Rdc(t ), and V other is the velocity additive component caused
by the “Other velocity control” input.

APPENDIX 2
A SIMPLE QUANTITATIVE ACCOUNT AGAINST SPATIAL RETINAL
CODING OF FINE SPATIAL DETAILS
Our ability to detect relative offsets is an order of magnitude better
than the separation power of the eye. For example, we can detect

an offset of a few arcseconds between two co-linear lines (vernier
hyperacuity) while we can detect a separation between two parallel
lines only if they are separated by about an arcminute (separation
acuity; Westheimer, 1976). Hyperacuity is achieved only in relative
coordinates, i.e., only between co-existing elements (McKee and
Levi, 1987; McKee et al., 1990). It had been shown that separation
acuity is limited by the amount of smearing caused by the optics
of the eye and by cone spacing in the fovea – two variables that
match each other (Westheimer, 1987). It is not known what lim-
its hyperacuity and how it is achieved. It is widely assumed that
hyperacuity benefits from the very same factor that limits separa-
tion acuity – optical smearing. Since the optics of the eye spread
each tiny spot of light over several cones, the location of that spot
can be computed by computing the center of cone activation. The
resolution of such localization does not depend on cone granular-
ity but on the granularity of cone responses, i.e., by the power of
cone response in resolving the intensity of light absorbed by it.

Thus, with the aid of optical smearing, and perhaps overlap-
ping RFs, the challenge of obtaining hyperacuity resolution can
be transferred to the intensity domain. However, with all-or-none
spikes, response intensity can only be measured along time. How
much time is required for collecting enough spikes to detect a
vernier offset? A retinal network that is simulated under realistic
conditions can generate a one to two spikes difference for a near-
threshold vernier offset, if it is given 60 ms (Wachtler et al., 1996).
To check whether this time period depends on the actual detec-
tion mechanism, we performed a simple calculation. We examined
the time required for generating a one spike difference in the
ensemble firing probability, where the only assumption is that the
response of each cell in the population decreases monotonically
with the visual angle of the stimulus. Interestingly, this time win-
dow hardly depends on the size of the population, and depends
only on the maximal firing rate evoked in that population and
on the vernier offset (Spatial Encoding of Hyperacuity by Firing
Rates in Appendix 3). With realistic response values (Wachtler
et al., 1996) and an offset of 1/4 of a ganglion RF diameter, this
time window is estimated as ≥80 ms. This time window could
decrease significantly had the retinal signal been duplicated over
several such ganglion populations. However, vernier acuity hardly
improves when the vernier components are elongated. In fact,
excellent vernier acuity is obtained with just two dots. This obser-
vation by itself already contradicts simple accumulation of retinal
firing rates, or of other pure spatial signals, as a mechanism for
hyperacuity.

The main consideration that invalidates a pure spatial encoding
for fine details is the following. As the above observations show,
it would take 60 ms or more to obtain a minimally detectable
difference in spike counts of ganglion cells, whose RF diameters
are smaller than 1 arcmin (foveal RFs get as small as 0.3 arcmin).
However, during these 60 ms the eye had traveled over a signifi-
cant number of such RFs [estimations would vary between 2 and
10 arcmin, equivalent to 6–30 RFs, depending on the study: (Ratliff
and Riggs, 1950; Barlow, 1952; Moller et al., 2002; Cherici et al.,
2012; see Figures 1A and A1). Thus, individual ganglion cells never
get enough time to express light intensity in spike counts with suffi-
cient resolution. Moreover, integration over different RFs would be
possible only if the cortical trajectory of the relevant signal would
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FIGURE A1 | FeyeM recorded from one human subject while fixating on a single point distanced 1 m from the subject. Ten repetitions of a 4-s fixation
period are shown. The three-cycle epoch used in the simulations of Figures 7 and 8 are colored in green and cyan. Courtesy of Dr. Moshe Fried.

be known to the readout circuit ahead of time – a mechanism that
does not seem to be feasible.

SAMPLING OF RELATIVE DEPTH INFORMATION BY MICROSACCADES
High resolution depth information depends on fine coordina-
tion between the eyes. During fixation, eye movements are well
coordinated only during microsaccades, during which the eyes
move simultaneously to the same direction and roughly at the
same amplitude (Krauskopf et al., 1960; St Cyr and Fender, 1969).
Luminance changes scanned by such brief microsaccades evoke
responses in the retina, as is evident from responses of cortical
“saccade cells” (Snodderly et al., 2001). The binocular disparity of
these responses is translated to some depth value in the brain (Pog-
gio, 1995; Qian, 1997). This depth value carries an error in absolute
coordinates due to misalignment of the eyes which are continu-
ously drifting along different paths (McKee et al., 1990). However,
since this error is common to the entire image, relative depth rela-
tionships can still be resolved, and with the maximal resolution
allowed by stereoptic mechanisms (e.g., Archie and Mel, 2000).

How do relative 2D and relative depth computations interact in
the visual system is not yet known. However, the complementary

nature of the responses of cortical “position/drift cells” and “sac-
cade cells” (Snodderly et al., 2001), suggests that 2D and depth
computations might function in parallel employing a time-sharing
mechanism: 2D relationships are computed in a periodic manner
as describe above, whereas depth relationships are updated during
brief interleaving microsaccades, to which the 2D mechanisms are
“blind.”An example to illustrate such a process would be the “cycle
stealing” mechanism serving direct memory access in computers:
memories are updated directly by a peripheral device during brief
episodes to which the central processing unit is blind (see, for
example, Horowitz and Hill, 1980).

EXAMPLES OF HUMAN FEYEM
FeyeM were recorded from the right eye of human subjects at
240 Hz and a resolution of 0.01˚ by the iView-X system (SensoMo-
toric Instruments, GMBH). Subjects looked at a computer screen
distanced 1 m ahead of them and either tried to keep fixation
on a single spot marked with a cross or viewed an image freely.
Figure A1 depicts 10 FeyeM traces recorded from one human
subject while fixating on a single spot within an otherwise blank
screen. Figure A2 depicts (i) 50 epochs of 300 ms each from traces
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FIGURE A2 | FeyeM recorded from five human subjects while wearing
masks with artificial eyes (A), fixating on a single spot surrounded by
horizontal or vertical gratings (B), freely viewing a colorful image (C,D).
Traces are depicted for arbitrary windows of 300 ms (A,B) or for fixational

pauses – period starting 30 ms after a saccade and ending 10 ms before the
next saccade. Raw traces are depicted in blue and smoothed traces
(Butterworth, four poles LPF at 40 Hz) in red. Calibration bar (C) 6 arcmin. (D)
Power spectra of the traces in (C). Data are courtesy of Dr. Moshe Fried.

of subjects wearing masks with artificial eyes (Figure A2A) – these
traces depict the noise induced by the recording system and by
head movements; (ii) 50 epochs of 300 ms each from traces of
subjects fixating on a single spot surrounded by horizontal or
vertical gratings (Figure A2B); (iii) 50 fixational pauses of sub-
jects while freely viewing a natural image (Figure A2C; note
the different time scale) and their power spectra (Figure A2D).
Fixational pause was defined as the period starting 30 ms after
a saccade and ending 10 ms before the next saccade. The dis-
tribution of fixational pauses had a mode around 300 ms; only
pauses whose duration was >250 ms are depicted. The 50 epochs
were selected in these three cases according to the same criteria,
exhibiting the largest modulation depths in each data set, and were
de-trended.

DEPENDENCY OF R OUT ON IMAGE VELOCITY
Dependency of Rout on image velocity is depicted in Figure A3.

APPENDIX 3
SPATIAL ENCODING OF HYPERACUITY BY FIRING RATES
Excellent vernier alignment is achieved with just two or three dots
(e.g., Westheimer, 1987; Carney et al., 1995). The location of each
dot can be estimated from the firing rates of all ganglion cells
activated by that dot. We are not interested in the exact estima-
tion mechanism here. We ask: for how long should that neuronal
population be active before a detectable difference in spike count
emerges for a hyperacuity offset. For simplicity we approximate
the point spread function to a linear decay. We assume that the
center of the activated population is firing at R spikes/ms, and this
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FIGURE A3 | Dependency of Rout on image velocity (V x). Equation A10 in Appendix 1 is plotted for V eye = 20–80’/s, Ieye (Ie) = 100 ms, and T c = 66 ms.

rate decreases to 0 linearly across N neurons, where N is the total
number of ganglion neurons that can potentially participate in
this computation.

We express the vernier offset, d, in units of cell numbers (d < 1);
thus, N and d share the same units. We look at the resolution of a
population of N neurons: what is the minimal offset of a stimulus
that will change the population spike count by one spike during
time T. The difference (D) in population spike count induced by an
offset d during 1 ms of response is the difference in the area of two
triangles, of lengths N and N − d, and heights R and R(N − d)/N.
These triangles represent the firing probabilities of the population
of neurons in which activity would change in the same direction,
e.g., increase, had their stimulating dot moved by d.

D = 0.5

(
RN −

R(N − d)2

N

)
=

R

2N
(2Nd − d2) [spikes/ms]

Since 2Nd > > d2,

D ≈ Rd [spikes/ms]

Thus, the difference does not depend at all on N, but on the
offset and the maximal firing rate in response to such stimuli.
This would be true in general for any gradually decreasing func-
tion, since as the spread becomes wider, more cells are involved,
but at the same time the slope becomes smaller and the differ-
ence in activity induced by the two positions decreases. Indeed,
numerical solutions of Gaussian-like decaying functions, such as
the point- or line-spread functions specified for pupil diameters
around 3 mm (Wachtler et al., 1996) show similar independence
on N for N >∼4, and similar or smaller D values.

The time window required for achieving one spike difference
in such retinal populations is thus:

T ≥
1

Rd
[ms]

The maximal retinal response rate observed with line vernier stim-
uli was R= 1/20 spikes/ms (Wachtler et al., 1996). Vernier offsets
at threshold are smaller than 1/4 of the smallest cone diameter. For
d = 1/4 we get T ≥ 80 ms. Thus, it would take at least 80 ms to get
a difference of 1 spike across the entire population of the relevant
retinal ganglion cells.
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