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Rhythmic active touch, such as whisking, evokes a periodic reference
spike train along which the timing of a novel stimulus, induced, for ex-
ample, when the whiskers hit an external object, can be interpreted. Previ-
ous work supports the hypothesis that the whisking-induced spike train
entrains a neural implementation of a phase-locked loop (NPLL) in the
vibrissal system. Here we extend this work and explore how the entrained
NPLL decodes the delay of the novel, contact-induced stimulus and fa-
cilitates object localization. We consider two implementations of NPLLs,
which are based on a single neuron or a neural circuit, respectively, and
evaluate the resulting temporal decoding capabilities. Depending on the
structure of the NPLL, it can lock in either a phase- or co-phase-sensitive
mode, which is sensitive to the timing of the input with respect to the
beginning of either the current or the next cycle, respectively. The co-
phase-sensitive mode is shown to be unique to circuit-based NPLLs.
Concentrating on temporal decoding in the vibrissal system of rats, we
conclude that both the nature of the information processing task and the
response characteristics suggest that the computation is sensitive to the
co-phase. Consequently, we suggest that the underlying thalamocortical
loop should implement a circuit-based NPLL.

1 Introduction

One of the major computational tasks facing the vibrissal somatosensory
system is to determine the angle of the vibrissa on contact with an ex-
ternal obstacle. The vibrissal system receives external sensory input from
the trigeminal neurons whose response patterns include both whisking
locked spikes and contact-induced spikes (Szwed, Bagdasarian, & Ahissar,
2003). The whisking locked spike train provides a periodic reference
input at the whisking frequency. The contact-induced activity represents the
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timing of the novel event of interest. When whisking frequency is consistent
across cycles, the resulting computational task is equivalent to decoding the
temporal delay or phase shift of a novel input with respect to a reference
periodic input (Ahissar & Zacksenhouse, 2001), a basic computational task
shared by other active sensory tasks, including vision (Ahissar & Arieli,
2001).

At the algorithmic level (Marr, 1982), it was suggested that this compu-
tation can be performed by phase-locked loops (PLL) (Ahissar & Vaadia
1990; Ahissar, Haidarliu, & Zacksenhouse, 1997; Ahissar & Zacksenhouse,
2001). PLLs are (electronic) circuits that can lock to the frequency of their ex-
ternal input and perform important processing tasks, including frequency
tracking and demodulation (Gardner, 1979). One of the major motivations
for this hypothesis is based on the implementation level. Specifically, neu-
ronal implementations of circuit-based PLLs (NPLLs), like the one shown
in Figure 1 and detailed in section 2, require neuronal oscillators whose
frequencies can be controlled by the input rate (rate-controlled oscillator,
RCO) (Ahissar et al., 1997; Ahissar, 1998). Thus, the evidence that over
10% of the individual neurons in the somatosensory cortex can operate as
controllable neural oscillators (Ahissar et al., 1997; Ahissar & Vaadia, 1990;
Amitai, 1994; Flint, Maisch, & Kriegstein, 1997; Lebedev & Nelson, 1995;
Nicolelis, Baccala, Lin, & Chapin, 1995; Silva, Amitai, & Connors, 1991)
provided the initial motivation and further support for the hypothesis that
these neurons function as RCOs in circuit-based NPLLs.

Other requirements for implementing PLLs in the vibrissal system and
agreement with the model predictions have also been demonstrated:

� The frequencies of the local cortical oscillators can be increased by
local glutamatergic excitation (Ahissar et al., 1997).

� These oscillators can track the whisker frequency (Ahissar et al., 1997).
� The whisker frequency is encoded in the latency of the response of tha-

lamic neurons (Ahissar, Sosnik, & Haidarliu, 2000; Sosnik, Haidarliu,
& Ahissar, 2001).

� Thalamic neurons respond after (and not before, as would be ex-
pected from relay neurons) cortical neurons (Nicolelis et. al, 1995) as
predicted by a thalamocortical PLL (Ahissar et al., 1997).

While these investigations focused on the response of the vibrissal sys-
tem to the reference, whisking-induced input, the response to the novel
contact-induced input was not investigated in detail. The purpose of
this article is to investigate and demonstrate how NPLLs respond to the
novel contact-induced input and assess the resulting temporal decoding
capabilities. Furthermore, we address the issue of whether circuit-based
NPLLs provide any computational advantages over single-neuron imple-
mentations (Hoppensteadt, 1986). Specifically, we distinguish between two
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locking modes, which are sensitive to either the phase or co-phase of the
input (the normalized delay of the input with respect to the preceding or
succeeding oscillatory event, respectively). It is shown that single neurons
can implement only phase-sensitive NPLLs, while circuit-based NPLLs can
implement both. In the context of the vibrissal thalamocortical system, both
the response characteristics and the nature of the information processing
task suggest that the computation should be sensitive to the co-phase and
thus should be implemented by circuit-based NPLLs.

Section 2 develops a mathematical model of NPLLs and describes four
possible variants and their respective characteristics. Section 3 investigates
the temporal decoding capabilities provided by the different NPLLs and
evaluates them with respect to the temporal decoding task performed by
the vibrissal system. Section 4 investigates the response characteristics of
cortical oscillators and determines which of the four NPLL variants they
implement. The information processing capabilities of NPLLs implemented
by single neural oscillators and by neural circuits are discussed in section 5,
considering both temporal decoding and temporal pattern generation.

2 Mathematical Modeling of PLLs

Different neuronal implementations of the well-known electronic PLLs
(Gardner, 1979) are possible (Ahissar, 1998), including for example, the
neuronal circuit of Figure 1. The instantaneous frequency of the neural
oscillator depends on its intrinsic frequency and the rate of its input (rate-
controlled oscillator, RCO). The input to the RCO is generated by an ensem-
ble of phase-detecting neurons, grouped together as a PD, whose ensemble
output rate depends on the delay between the external spike and the RCO-
evoked spike. When the NPLL locks to the external input, the instantaneous
frequency of the internal RCO tracks the instantaneous frequency of the ex-
ternal input, and the deviation from the intrinsic frequency is encoded in
the output rate of the PD (Ahissar et al., 1997; Ahissar, 1998).

2.1 Phase Models. The activity of a neural oscillator may involve a
single spike or a burst of spikes, which repeat periodically. It is natural to
describe the periodic activity as a function of a phase variable (Rand, Cohen,
& Holmes, 1986). By normalizing the phase of the oscillator θosc(t) to a unit
interval, that is, θosc ∈ [0, 1], it describes the fraction of the elapsed cycle.
When the phase reaches the unit level, it resets to zero, and the oscillator
generates a single spike or a burst of spikes. The phase of a free oscillator
varies at a constant rate, whose inverse determines its intrinsic period τosc .
So: θ̇osc = τ−1

osc (Zacksenhouse, 2001).
The input to the oscillator affects the rate at which the phase changes

and thus the period of the oscillator. In general, the effect may depend
on the complete history of the input. However, here we assume that upon
completing an oscillatory cycle and generating a spike in the case of a neural
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Figure 1: Neuronal Phase-locked loop (NPLL): (a) Schematic 
illustration of a NPLL, which includes a Phase Detector (PD) and a 
Rate-controlled Oscillator (RCO). (b) Schematic illustration of a 
particular implementation of a PD – the sub-threshold activated 
correlation-PD: input spikes, marked by upward arrows, arrive from 
either an external source or the internal oscillator and produce sub- 
threshold activations are summed and evoke a fixed-rate response 
when the threshold is crossed. Thus, the PD responds when the sub-
threshold activations from both the internal and external sources 
overlap. Other implementations are discussed in the text and depicted 
in Figure 2 and 3.  
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Figure 1: Neuronal phase-locked loop (NPLL). (A) Schematic illustration of a
NPLL, which includes a phase detector (PD) and a rate-controlled oscillator
(RCO). (B) Schematic illustration of a particular PD, the subthreshold-activated
correlation PD: input events, marked by upward arrows, arrive from either an
external source or the internal oscillator and produce subthreshold activation
of fixed strength and duration. The subthreshold activations are summed and
evoke a fixed-rate response when the threshold is crossed. Thus, the PD re-
sponds when the subthreshold activations from both the internal and external
sources overlap. Other implementations are discussed in the text and depicted
in Figures 2 and 3.
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oscillator, the oscillator is reset independent of its history. Thus, the period
is assumed to vary only as a function of the phase of the input during the
current cycle. Specifically, the instantaneous frequency during the nth cycle
is θ̇osc = τ−1

osc + h(θosc |{ηk}N(t)
k=N(tn)+1), where ηk is the time of occurrence of the

kth input event, N(t) is the number of input events that occurred up to
time t (the counting process; Snyders, 1975), and tn is the time of occurrence
of the nth oscillatory event (and the start of the nth cycle). The function
h(θosc | {ηk}N(t)

k=N(tn)+1) describes the effect of the input events that occur during
the nth cycle and depends in general on their time of occurrence and the
phase of the oscillator.

The above effect may be simplified in two extreme but very important
cases: pulse-coupled oscillators and rate-controlled oscillators. In the first
case, the effect of an isolated input event, usually from a single source, is
short compared with the inter-event interval, and in the extreme assumed
instantaneous. In the second case, the effects from different input events,
coming usually from different sources, are highly overlapping, so the rate
rather than the timing of the individual events determines the overall effect.

2.1.1 Pulse-Coupled Oscillators. The instantaneous effect of the input
is described by θ̇osc = τ−1

osc ± f (θosc)δ(t − ηN(t)), where f (θosc) is known as
the phase-response curve (PRC) (Perkel, Schulman, Bullock, Moore, &
Segundo, 1964; Kawato & Suzuki, 1978; Winfree, 1980; Yamanishi, Kawato,
& Suzuki, 1980; Zacksenhouse, 2001). Upon integration,

θosc = t/τosc ±
k=N(t)∑

k=N(tn)+1

f (θosc(ηk)),

and the perturbed period τp(n) is given by

τp(n) = τosc


1 ∓

k=N(tn+τp)∑
k=N(tn)+1

f (θosc(ηk))


 .

When only one input event occurs during the oscillatory cycle, the modified
period is

τp(n) = τosc
(
1 ∓ f (ϕ(n))

)
. (2.1)

where ϕ(n) = (ηN(tn)+1 − tn)/τosc is the phase of the oscillator at the time of
occurrence of that input event.

As will be further discussed in section 4, a single pulse-coupled oscillator
is equivalent to a PLL. However, a PLL may also be implemented by a
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(neural) circuit that includes an RCO, whose characteristics are detailed
below.

2.1.2 Rate-Controlled Oscillator (RCO). For simplicity, we assume that
the RCO response depends on its input spike rate r (t), independent of its
phase, so θ̇RCO = τ−1

RCO ± hRCO(r (t)), where τRCO denotes the intrinsic period of
the RCO and hRCO describes the effect of the input rate on the instantaneous
frequency. Upon integration, the perturbed period is given by

τp(n) = τRCO

(
1 ∓

∫ tn+τp

tn
hRCO(r (t))dt

)
.

This can be expressed in terms of the lumped rate parameter, R(n), which
describes the integrated effect of the input to the RCO during its nth cycle
on the duration of that cycle, as

τp(n) = τRCO

(
1 ∓ R(n)

)
, R(n) =

∫ tn+τp

tn
hRCO

(
r (t)

)
dt. (2.2)

Thus, the lumped rate parameter, R(n), describes the integrated effect of
the input during the nth cycle, with the net effect of either shortening or
lengthening the period, as denoted by the ∓ sign, respectively. These effects
are usually associated with excitatory and inhibitory inputs, respectively,
although intrinsic currents may cause the reverse effect (Jones, Pinto, Kaper,
& Koppel, 2000; Pinto, Jones, Kaper, & Koppel, 2003). In the linear case,
that is, linear hRCO, the lumped parameter R(n) is proportional to the total
number of spikes that occur during the nth cycle.

The RCO can be implemented by an integrate-and-fire neuron as ana-
lyzed and simulated in Zacksenhouse (2001). When the integrate-and-fire
RCO is embedded in an inhibitory PLL, the lumped rate parameter is an
approximately linear function of the total number of spikes (Zacksenhouse,
2001, equation A8).

An RCO that is embedded in a PLL receives its input from a PD, whose
response characteristics are analyzed next.

2.2 Phase Detectors. The PD receives input from two sources, the ex-
ternal input and the internal RCO, and converts the interval between them
into an output spike rate. For unique decoding, the conversion should be
monotonic, with either a decreasing or increasing response (Ahissar, 1998).
In particular, the PD may compute the correlation between the two inputs
and respond maximally when the interval is zero (correlation-based PD, or
Corr-PD). Alternatively, the PD may compute the time difference between
its two inputs and respond minimally when the interval is zero (difference-
based PD, or Diff-PD) (Kleinfeld, Berg, & O’Connor, 1999).
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2.2.1 Input Representation. The mathematical formulation of the com-
putation performed by the PD depends on the representation of its input
signals, which may be analog, binary, or discrete (Gardner, 1979). Analog
signals are described by waveforms (usually sinusoidal) that vary with the
phase of the cycle. Binary signals are described by rectangular waveforms
whose onset is taken to be the origin. Discrete signals consist of discrete
events that occur once per cycle, at a particular phase, which is taken to be
the origin. In the context of neural implementations, discrete signals may
describe the spike trains from single oscillating neurons, binary signals
may describe the spike trains from bursting neurons, and analog signals
may describe the average firing rate from a population of neurons and
postsynaptic potentials. The main difference between these representations
is the information they provide (or do not provide) about the phase vari-
able. Analog signals may provide continuous indication of the phase, while
binary and discrete signals provide information only at a specific phase (the
origin). (It is noted that binary and discrete signals may be derived from
each other and are essentially equivalent. In particular, the zero crossing of
the rectangular wave is a discrete signal, and discrete signals may be used
to generate rectangular waves using a memory device that is switched on
for a fixed duration whenever a discrete event occurs.)

The nature of operation of the PD is directly related to the nature of
its inputs. The phase between analog inputs is detected using multiplier
circuits, or mixers (Gardner, 1979), which operate as correlation-based PDs.
The phase between binary or discrete signals is detected using logical de-
vices (Gardner, 1979), which may operate as either correlation-based PDs
(e.g., binary AND-gate) or difference-based PDs (e.g., binary Exclusive-OR
gate) (Ahissar, 1998).

Considering the spiking nature of neuronal signaling, we adopt the dis-
crete, or equivalently the binary, representations in this work. These repre-
sentations facilitate the unified investigation and comparison of PLLs with
correlation-based and difference-based PDs. We use the term event to reflect
either an event in a discrete representation or the rising edge of a rectangular
signal in a binary representation.

In the following mathematical formulation, significant phase variables
are defined by normalizing the corresponding time intervals with respect
to the intrinsic period of the RCO, τRCO. In particular, each input event is
localized with respect to the preceding and the succeeding RCO events, as
shown in Figure 2. The normalized intervals between the kth input event
and the preceding or succeeding RCO events are referred to as the phase,
ϕ(k), and co-phase, ψ(k), respectively. The normalized intervals since the last
input or RCO events are denoted by θi and θo , respectively. Equation 2.2 de-
scribes how the period of the RCO is perturbed by the input it receives from
the PD. The external input is composed of two spike trains: (1) a reference
spike train described by a free oscillator with periodτi p and normalized
input period ζ = τi p/τRCO, and (2) a novel spike whose timing with respect
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Figure 2: Phase relationships between input events, marked by upward arrows
ending at the horizontal axis, and RCO-generated events, marked by upward
arrows originating at the horizontal axis, and the corresponding response of a
subthreshold-activated PD. (A, B) Cases in which the input is lagging or leading
the RCO events, respectively. The horizontal axes gauge time normalized by
the period of the intrinsic RCO, τRCO, so they correspond directly to the phase.
The normalized intervals between the kth input event and the preceding or
succeeding RCO events are referred to as the phase, ϕ(k), and co-phase, ψ(k),
respectively. Each event causes a subthreshold activity during a window of
normalized duration θw , which, for clarity, are marked for only one pair of
events in each panel. The resulting responses evoked by that pair of events are
depicted on the short axes, for a correlation-based and a difference-based PD,
respectively.
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to the reference spike train carries the information to be detected by the
PLL.

2.2.2 Correlation-based PD. Two types of simple correlation-based PDs
are analyzed in detail and shown to have similar response characteristics,
which are then abstracted to characterize the response of general
correlation-based PDs.

Simple example of a threshold-activated PD. This is the case depicted
in Figure 1B. Each of the inputs to the PD, coming from either the external
input or the internal RCO, produces excitatory subthreshold activation for
a normalized duration θW. The correlation-based PD responds at a constant
rate when these activities overlap, as shown schematically in Figure 2.
Consequently, the instantaneous output rate of the PD is given by

rCorr (θi , θo) = r0U(θW − θi )U(θW − θo), (2.3)

where r0 is the constant output rate and U(·) is the unit function (a function
that is 1 when its argument is positive and 0 elsewhere). In general, the
duration of the subthreshold activation may depend on whether the input
is coming from the external input or the internal RCO, but for simplicity of
notation, this difference is ignored, and a single θW is used.

As derived in equation 2.2, the lumped effect of the PD on the period of
the RCO depends on the lumped rate parameter R. Assuming a linear case
(and without loss of generality, a unit gain), the lumped rate parameter is
given by integrating the instantaneous rate given in equation 2.3. Conse-
quently, an input event that occurs at a phase ϕ(k) and co-phase ψ(k) would
result in a lumped rate parameter Rcorr (k) of

Rcorr (k) =




r0(θW − ϕ(k)) if ϕ(k) < θW

r0(θW − ψ(k)) if ψ(k) < θW

0 otherwise

. (2.4)

The duration of the subthreshold activation θW is assumed to be short
enough so at the most, one of the first two conditions holds during regular
operation (i.e., θW < τRCO/2). In the vibrissal system, the duration of indi-
vidual reference signals, that is, whisking-locked responses of individual
first-order trigeminal neurons, is indeed shorter than half of the whisking
cycle, and is usually confined to the protraction (forward movement of the
whiskers) period (Szwed et al., 2003). When the RCO’s period is locked to
the whisking period, the above relationship would hold.

Considering the order of input and RCO events that cause the PD to
respond, we refer to the first and second cases as input lagging and leading,
respectively.
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Figure 3: Gated PD. The external input evokes a burst of spikes, which is gated
by the PD. The onset of the gating is determined by intrinsic oscillator (RCO).

Simple example of a gated PD. In this case, the external input is com-
posed of a burst of spikes (Szwed et al., 2003), which is gated by the PD,
as shown in Figure 3. The onset of the burst is determined by the exter-
nal input, while the onset of the gating is determined by the RCO. The
burst lasts for a normalized duration of θburst and, for simplicity, is assumed
to have a constant rate of rip. The duration of the gating window is θgate

and for simplicity is assumed to equal the duration of the input burst so
θgate = θburst ≡ θW. Thus, the instantaneous output rate of the gated PD is
the same as that for the constant rate PD, with r0 = rip, and equation 2.4
describes the resulting lumped rate parameter due to an isolated external
event.

General correlation-based PD. According to equation 2.4, the response
of a correlation-based PD decreases linearly with the relevant phase vari-
able (the phase or the co-phase when the input is lagging or leading, respec-
tively). In general, the response may be nonlinear, but its derivative should
characteristically be negative:

RCorr (k) =




g(ϕ(k)) if ϕ(k) < θW (input lagging)

g(ψ(k)) if ψ(k) < θW (input leading)

0 otherwise

, (2.5)

where
dg(x)

dx
≤ 0.
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Equations 2.4 and 2.5 specify the response of a linear or nonlinear
correlation-based PD, respectively, to a pair of input and RCO events.

2.2.3 Difference-based PD. Two types of difference-based PDs, analo-
gous to the ones considered above, are analyzed in detail and shown to
have similar response characteristics, which are abstracted to characterize
the response of general difference-based PDs.

Simple example of a threshold-activated PD. Here the external input
events evoke superthreshold activation of fixed strength and duration,
while the RCO events evoke inhibitory activation of a similar strength and
duration. The difference-based PD responds at a constant rate when the
overall activation is superthreshold, that is, when an external event but not
an RCO event occurred during the last window θw, as shown schematically
in Figure 2. Consequently, the instantaneous output rate is given by

rDiff(θi , θo) = r0U(θW − θi )U(θo − θW). (2.6)

In the linear case considered in the context of the correlation-based PD,
the lumped rate parameter is given by:

RDiff(k) =




r0ϕ(k) if ϕ(k) < θW

r0ψ(k) if ψ(k) < θW

r0θW otherwise

. (2.7)

The window is assumed short enough so at the most, one of the first two
conditions, corresponding to input lagging or leading, respectively, holds
during regular operation.

Simple example of a gated PD. In this case, the external input involves
a burst of spikes, which is relayed by the PD except for the duration of the
gate, which blocks the PD response. Using the parameters defined above,
the instantaneous output rate of the gated PD is the same as that for the
constant rate PD, and equation 2.7 describes the resulting lumped rate
parameter due to an isolated external event.

General difference-based PD. According to equation 2.7, the response
of a difference-based PD increases linearly with the phase or co-phase in the
respective working regions. In general, the response of a difference-based
PD may be nonlinear, but its derivative should characteristically be positive:

RDiff(k) =




g(ϕ(k)) if ϕ(k) < θW (input lagging)

g(ψ(k)) if ψ(k) < θW (input leading)

g(θW) otherwise

, (2.8)

where
dg(x)

dx
≥ 0.
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Table 1: PLL Characterization.

Correlation-Based PD Difference-Based PD

ePLL (ζ ≤ 1) iPLL (ζ ≥ 1) ePLL (ζ ≤ 1) iPLL (ζ ≥ 1)

Input Lagging Leading Leading Lagging
Relevant phase Phase ϕ Co-phase ψ Co-phase ψ Phase ϕ

Steady phase ϕ∞ =
g−1 [(1 − ζ )]

ψ∞ =
g−1 [(ζ − 1)]

ψ∞ =
g−1 [(1 − ζ )]

ϕ∞ =
g−1 [(ζ − 1)]

Linear case ϕ∞ =
r0θw−1+ζ

r0

ψ∞ =
r0θw+1−ζ

r0

ψ∞ = 1−ζ
r0

ϕ∞ = −1+ζ
r0

As ζ → 1 ϕ∞ ↑ ψ∞ ↑ ψ∞ ↓ ϕ∞ ↓

Equations 2.7 and 2.8 specify the response of a linear or nonlinear difference-
based PD, respectively, to a pair of input and RCO events.

2.3 PLL Stable Response. During stable 1:1 phase entrainment to a
periodic, external input, the response of the PD (and thus of the PLL) is
sensitive to either the phase or the co-phase depending on the type of the
PD and its connection to the RCO. A PLL in which the PD connection to
the RCO is excitatory is referred to as an excitatory PLL (ePLL), while a PLL
in which the PD is connected to the RCO via an inhibitory interneuron is
referred to as an inhibitory PLL (iPLL) (Ahissar, 1998). The following theorem
characterizes the operation of the different PLLs and is summarized in
Table 1.

Theorem 1: PLL Characterization. During stable 1:1 entrainment of ePLL/
iPLL, the input is lagging or leading, respectively, when the PD is correlation based,
and leading or lagging, respectively, when the PD is difference based. Within the
working range (i.e., ζ ≤ 1 or ζ ≥ 1), as the input period approaches the intrinsic
period of the RCO, the corresponding phase variable, that is, the steady-state phase
ϕ∞ for lagging input or the steady-state co-phase ψ∞ for leading input, increases
when the PD is correlation based and decreases when the PD is difference based.

Proof. Considering an interval of time during which the input is consis-
tently lagging (i.e., ϕ(k) < θW for all the input events in the interval), the
phase of the (k + 1)th input is related to the phase of the kth input by ϕ(k +
1) = ϕ(k) + ζ − τp(k)/τRCO. According to equation 2.2 and either equation 2.5
or 2.8, the perturbed period is given by

τp(k)/τRCO = 1 ∓ g
(
ϕ(k)

)
, (2.9)
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regardless of the type of the PD, so

ϕ(k + 1) = ϕ(k) + ζ − 1 ± g
(
ϕ(k)

)
. (2.10)

When the input is consistently leadingψ(k) < θW, the co-phase of the
(k + 1)th input is related to the co-phase of the kth input by ψ(k + 1) =
ψ(k) − ζ + τp/τRCO. According to equation 2.2 and either equation 2.5 or
2.8, the perturbed period is given by

τp(k)/τRCO = 1 ∓ g
(
ψ(k)

)
, (2.11)

regardless of the type of the PD, so

ψ(k + 1) = ψ(k) − ζ + 1 ∓ g
(
ψ(k)

)
. (2.12)

Equations 2.10 and 2.12 imply that the equilibrium condition is specified by
ϕ∞ = g−1 [±(1 − ζ )] when the input is lagging and by ψ∞ = g−1 [±(1 − ζ )]
when the input is leading. Furthermore, the stability condition is given
by −2 < ± dg(x)

dx |ϕ∞ < 0 when the input is lagging and by −2 < ∓ dg(x)
dx |ψ∞ <

0 when the input is leading. For the correlation-based PD, dg/dx ≤ 0 so
the ePLL stabilizes with lagging input at ϕ∞ = g−1 [(1 − ζ )] and the iPLL
stabilizes with leading input at ψ∞ = g−1 [ζ − 1]. For the difference-based
PD, dg/dx ≥ 0, so the opposite holds.

The period of the input to an ePLL is shorter than the intrinsic period of
the RCO so ζ ≤ 1. As the frequency of the input approaches the intrinsic
frequency of the RCO, ζ ↑ 1, so (1 − ζ ) ↓ 0. The period of the input to
an iPLL is longer than the intrinsic period of the RCO, so ζ ≥ 1. As the
frequency of the input approaches the intrinsic frequency of the RCO, ζ ↓ 1
so (ζ − 1) ↓ 0. For a correlation-based PD, dg/dx ≤ 0, and so both the steady
phase ϕ∞ and the steady co-phase ψ∞ increase as the frequency of the input
approaches the intrinsic frequency of the RCO from below or above for the
ePLL/iPLL, respectively. For the difference-based PD, dg/dx ≥ 0 so both
the steady phase ϕ∞ and the steady co-phase ψ∞ decrease as the frequency
of the input approaches the intrinsic frequency of the RCO from below or
above for the ePLL/iPLL, respectively.

The linear operating curves of the different PLLs, given in Table 1, are
depicted in Figure 4 in terms of the absolute delay as a function of the
input period. The different panels depict the effect of the nominal rate r0,
and the parallel curves within each panel depict the effect of the intrinsic
period τRCO. It is noted that the operating range increases as the nominal
rate increases. However, according to the proof of the PLL characterization
theorem, r0 should be less than 2 to ensure stability, so only the top panels
depict stable (top left) and marginally stable (top right) operating curves.
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Figure 4: Linear steady-state curves describing the absolute delay between the
external input and internal oscillatory events as a function of the input period
for four types of PLLs. The curves shift in parallel as the intrinsic rate of the
RCOs is increased from 80 to 120 msec in steps of 10 msec as indicated by the
arrows in the bottom left panel. The nominal rate r0 is 1 (top left panel), 2 (top
right panel) 5 (bottom left panel), and 10 (bottom right panel).

Based on the PLL characterization theorem, we can classify the PLLs
into two groups according to whether they are sensitive to the phase or
co-phase of the input relative to the intrinsic oscillator. The phase-sensitive
PLLs include (a1) the ePLL with correlation-based PD and (a2) the iPLL
with difference-based PD, while the co-phase-sensitive PLLs include (b1)
the iPLL with a correlation-based PD and (b2) the ePLL with a difference-
based PD.

3 Temporal Decoding

3.1 Vibrissal Temporal Decoding Task. The entrainment of the PLL by
a periodic input prepares the PLL to properly decode a novel input. In order
to clarify this subtle issue, we consider in more detail the encoding of object
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Table 2: Total Response Rt of Phase-Locked NPLLs to a Novel Input.

Correlation-Based PD Difference-Based PD

ePLL iPLL ePLL iPLL

Novel Input/RCO Event
Leading (ψn) g(ϕ∞) + g(ψn) g(ψ∞) + g(ψn) g(ψ∞) + g(ψn) g(ϕ∞) + g(ψn)
Lagging (ϕn) g(ϕ∞) + g(ϕn) g(ψ∞) + g(ϕn) g(ψ∞) + g(ϕn) g(ϕ∞) + g(ϕn)

Linear PD
Leading (ψn) r0[2θw −

(ϕ∞ + ψn)]
r0[2θw − (ψ∞ +

ψn)]
r0(ψ∞ + ψn) r0(ϕ∞ + ψn)

Lagging (ϕn) r0[2θw −
(ϕ∞ + ϕn)]

r0[2θw − (ψ∞ +
ϕn)]

r0(ψ∞ + ϕn) r0(ϕ∞ + ϕn)

location in the vibrissal system. The location of the object is encoded in the
firing pattern of neurons in the trigeminal ganglion and probably also in
the brainstem. In particular, the firing patterns of trigeminal neurons, which
provide the external input to the vibrissal system, include two components
(Kleinfeld et al., 1999; Szwed et al., 2003): (1) a reference signal composed of
spikes at a preferred phase of the whisking cycle and (2) a contact-induced
signal composed of spikes that are evoked on contact with an external
object. The first component is periodic at the whisking period. The second
component is the novel input whose time of occurrence relative to the
reference signal (the first component) has to be decoded.

3.2 Effect of Novel Input. The external input to the PD is composed
of two components: the reference, periodic input, and the novel input. We
make the simple and physiologically appropriate assumption that the PD’s
response to each of these components is the same and independent of each
other, so the total response of the PD is the sum of the individual responses.
For the gated PD described in section 2.2.3, for example, once the gate is
opened by the RCO, the PD relays the bursts of activity that it receives from
either or both of the external inputs. Using equations 2.4, 2.5, 2.7, and 2.8 for
the response to either component of the external input, the total response
Rt of the different NPLLs can be derived as summarized in Table 2 and
depicted in Figure 5.

As evident from Table 2 and Figure 5, the total PD response varies mono-
tonically with the delay between the novel input and the oscillatory event
(i.e., ϕn or ψn) as long as the novel input is confined to either always lead or
always lag the RCO event. However, in order to provide sensory decoding,
the response should vary monotonically with the delay between the novel
input and the reference events. The relevant decoding ranges are specified
by the temporal detection theorem stated and proven in the next section.
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Figure 5: Total PD response as a function of the phase ϕn (increasing to the
right) and co-phase ψn (increasing to the left) of a novel input to a PLL that
is entrained by a periodic reference input with the indicated phase ϕ∞ or co-
phase ψ∞ relationship. The left/right pair of panels depict the total response
of correlation-/difference-based PDs embedded in ePLL (upper panels) and
iPLL (bottom panels). The arrows below the axes indicate the reference input,
while the arrows above the axes indicate the RCO events. The roman numbers
indicate the corresponding zone of the novel input as indicated in Table 2. The
solid/dashed lines indicate the response when the novel input lags/lead the
reference input.

3.3 PLL Temporal Decoding Capabilities

Theorem 2: PLL Temporal Detection. During 1:1 stable phase locking to a
periodic external input, a PLL can monotonically decode a novel input when it
has a fixed order with respect to both the reference input and the RCO events. The
resulting decoding ranges are specified in Table 3.

Proof. The output of the PD varies monotonically with the phase of the
novel input along the RCO cycle as long as the order between them is fixed
(second column of Table 3). The phase difference between the novel input
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Table 3: Monotonic Decoding Ranges.

Novel Novel
Input/ Input/ Correlation-Based PD Difference-Based PD
Reference RCO Zone
Input Events (Figure 5) ePLL iPLL ePLL iPLL

Leading Leading I θW θW − ψ∞ θW − ψ∞ θW
Leading Lagging II ϕ∞ 0 0 ϕ∞
Lagging Leading III 0 ψ∞ ψ∞ 0
Lagging Lagging IV θW − ϕ∞ θW θW θW − ϕ∞

and the reference input varies monotonically with the phase of the novel
input along the cycle of the RCO as long as the order between them is fixed
(first column of Table 3). Hence, the response of the PD varies monotonically
with the phase difference between the novel input and the reference input
when the order of the novel input with respect to both the reference input
and the RCO events is fixed, as specified by each row. Finally, the relevant
ranges with the specified phase relationships between the novel input and
both the reference input (first column of Table 3) or the RCO events (second
column of Table 3) follow directly given the steady-state phase and co-phase
of the reference input with respect to the RCO events.

It is apparent that the decoding range depends on whether the PLL
is phase or co-phase sensitive. When the order between the novel input
and the reference input is determined by the nature of the temporal de-
coding task, it is possible to distinguish between two decoding modes:
(1) narrow but monotonic, and thus unambiguous, decoding range (e.g.,
correlation-based ePLL decoding a novel input that lags the reference in-
put over the range θw − ϕ∞; bottom row of the third column in Table 3;
see also the top-left panel in Figure 5), and (2) wide but partially am-
biguous detection range (e.g., a correlation-based iPLL decoding a novel
input that lags the reference input over the range θw + ϕ∞; bottom two
rows of the fourth column in Table 3; see also the bottom-left panel in
Figure 5). The ambiguity stems from the fact that the order of the novel
input with respect to the RCO events is not constrained in this case. Thus,
the temporal detection theorem provides a design criterion for selecting
the PLL that best matches the requirements of a given temporal decoding
task.

The sensory information is encoded in the phase difference δ between
the novel input and the reference input and can be expressed in terms of the
phase of the novel input with respect to the closest RCO event and the phase
of the reference input with respect to the same RCO event, as specified in
Table 4. The following PLL temporal decoding theorem specifies how this
informative phase difference may be determined from the response of the
PD.
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Table 4: Phase Difference δ Between the Novel Input and the Reference Input.

Novel Input/Reference
Input

Novel Input/
RCO Events

Phase-Sensitive
PLLs

Co-Phase-Sensitive
PLLs

Leading Leading (ψn) ϕ∞ + ψn ψn − ψ∞
Leading Lagging (ϕn) ϕ∞ − ϕn NA
Lagging Leading (ψn) NA ψ∞ − ψn
Lagging Lagging (ϕn) ϕn − ϕ∞ ψ∞ + ϕn

Table 5: Parameters of the Relationship δ = a + b R∞/r0 + c Rt/r0 Specifying the
Phase Difference δ Between the Novel Input and the Reference Input as a Func-
tion of the Steady-State PD Response (R∞) and Total Response (Rt) of the PD.

Novel Novel Correlation-Based PD Difference-Based PD
Input/Reference Input/RCO
Input Events ePLL iPLL ePLL iPLL

Leading Leading (ψn) a = 2; a = 0; a = 0; a = 0;
b = 0; b = 2; b = −2; b = 0;
c = −1 c = −1 c = 1 c = 1

Leading Lagging (ϕn) a = 0; NA NA a = 0;
b = −2; b = 2;
c = 1 c = −1

Lagging Leading (ψn) NA a = 0; a = 0; NA
b = −2; b = 2;
c = 1 c = −1

Lagging Lagging (ϕn) a = 0; a = 2; a = 0; a = 0;
b = 2; b = 0; b = 0; b = −2;
c = −1 c = −1 c = 1 c = 1

Theorem 3: PLL Temporal Decoding. Consider a PLL that is phase-locked to
a periodic reference signal, and denote by R∞ the steady-state response of its PD. A
novel input induces an additional response so the total response of the PD is given
by Rt. The phase difference δ between the novel input and the reference input may
be determined by δ = a + b R∞/r0 + c Rt/r0 with the parameters given in Table 5
for the specific PLL variant.

Proof. The PLL decoding theorem follows directly from Tables 4 and 3
after expressing the steady-state phase or co-phase in terms of the steady
response R∞ using equations 2.4 and 2.7.

It is noted that in some cases, the computation involves the steady-state
PD response R∞. This may be made available by PLLs that do not receive the
novel input and thus continue to respond at R∞ even when the novel input
appears. However, when operating in the regime for which the specific
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PLL variant has the maximum decoding range (as specified in Table 2), the
steady-state PD response is not required. Specifically, when the novel input
lags both the RCO event and the reference event, the phase difference δ may
be directly inferred from the PD response of the co-phase-sensitive PLLs
(e.g., an iPLL with a correlation-based PD) after an appropriate offset.

3.4 Significance for Vibrissal Temporal Decoding.

3.4.1 Decoding Range. The whisking-locked reference signal is evoked
upon the onset of the protraction phase of whisking, that is, the phase
of forward movement, while the contact-induced signal is evoked later
during protraction, upon contact with the object (Szwed et al., 2003). Thus,
the contact-induced novel input lags the whisking-induced reference input.
According to the temporal detection theorem, the decoding ranges that can
be achieved in this case by the different PLL variants are specified in the
last two rows of Table 2. In particular, the phase-sensitive PLLs (i.e., the
ePLL with correlation-based PD and the iPLL with difference-based PD;
zone IV, solid curves in the upper-left and lower-right panels of Figure 5)
result in an unambiguous but narrow decoding range, while the co-phase-
sensitive PLLs (i.e., the iPLL with correlation-based PD and the ePLL with
difference-based PD; zones III and IV, solid curves in Figure 5 lower-left
and upper-right panels) result in a wide but partially ambiguous decoding
range.

In the latter case, the response is ambiguous when the novel input lags
the reference input by less than twice the co-phase ψ∞, that is, when the
contact with the object occurs relatively close to the preferred phase of the
whisking cycle. However, the response is still informative since it provides
approximate indication of the phase of the novel input, and furthermore, it
can be resolved by considering the response from a population of PLLs that
receive reference signals produced at different preferred phases (Ahissar,
1998). Hence, it can be concluded that in the case of vibrissal temporal
decoding, the widest detection and decoding ranges are obtained with
co-phase-sensitive PLLs, for which the input leads the intrinsic oscillator
during stable entrainment, in agreement with the observed oscillatory delay
(Nicolelis et al., 1995; Ahissar et al., 1997).

The two co-phase-sensitive PLLs, that is, the iPLL with a correlation-
based PD and the ePLL with a difference-based PD, differ in their input
operating ranges, which include input periods that are longer or shorter
than the intrinsic period of the oscillator, respectively (see Table 1, first row).
Recordings from whisking-range oscillatory neurons in the somatosensory
cortex indicate that they track mainly frequencies below their spontaneous
frequency (Ahissar et al., 1997). Thus, given the above theorems, the ob-
servations suggest that the somatosensory cortex participates in the imple-
mentation of iPLLs with correlation-based PDs.
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3.4.2 Frequency Modulation Experiments. Additional support for the
above conclusion may be drawn from frequency modulation experiments
in which the whiskers are stimulated by air puffs whose frequency is mod-
ulated by a slowly varying sinusoidal signal. The responses of neurons
along the paralemniscal pathway (one of the two major vibrissal sensory
pathways) followed the oscillatory input with varying latencies and spike
counts. As the frequency of the input varied sinusoidally between 3 and 7
Hz at a modulating frequency of 0.5 Hz, so did the latency and the spike
count of these neurons. However, while the first varied in phase with the
frequency of the stimulus, the latter varied in antiphase (Ahissar et al., 2000;
Ahissar, Sosnik, Bagdasarian, & Haidarli, 2001).

In particular, the latencies and spike counts of cortical neurons in layer 5a,
which receive input from thalamic neurons in the medial division of the
posterior nucleus (POm) along the paralemniscal pathway, were inversely
related, as plotted in Figure 6 (connected stars). Under the hypothesis that
the thalamocortical loops in the vibrissal paralemniscal system implement
NPLLs, the thalamic neurons should act as PDs (Ahissar et al., 1997). Ac-
cording to section 2.2.2, the observed relationship in neurons of layer 5a
indicates that the thalamic neurons that drive these cortical neurons behave
as correlation-based PDs. Thus, considering the four possible PLL variants,
the observed latencies and inverse relationship are consistent only with
the assumption that the paralemniscal pathway implements iPLLs with
correlation-based PDs, in agreement with our previous conclusion.

Indeed, simulations of an iPLL with a correlation-based PD demonstrate
a similar relationship, as shown in Figure 6. The circles in Figure 6 depict
the relationship between the spike count and the latency of the response of
the simulated PD to a frequency-modulated spike train input. To facilitate
comparison, the linear fit to the measured data is marked by a dashed line,
demonstrating good agreement with the simulated results.

4 Single Neural Oscillators

A single neuron can also be modeled as a PLL (Hoppensteadt, 1986). How-
ever, as indicated by equation 2.1, single neural oscillators are sensitive to
the phase at which the input events occur, not the co-phase. This is in-
deed the basis for characterizing neural oscillators using phase-response
curves. In particular, a single neural oscillator, described by equation 2.1,
is equivalent to a PLL with lagging input as described by equation 2.9,
where f (ϕ) = g(ϕ). However, a single neural oscillator cannot operate as a
NPLL with leading input, as described by equation 2.11, since its dynamics
depends on only the phase, never the co-phase, of the input.

As discussed above, the PLL temporal detection theorem suggests that
single oscillators, which can be sensitive only to the phase but not to the
co-phase, would provide a narrow decoding range when the novel input
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Figure 6: Average spike count versus average latency of paralemniscal corti-
cal neurons recorded from layer 5a of the barrel cortex in experiments with
frequency modulated (FM) stimulus (Ahissar et al., 2000; Ahissar et al., 2001).
Data points are marked with stars, each representing the latency and spike count
for one cycle, averaged across 36 repetitions of the same FM sequence (first cycle
excluded). Results from consecutive cycles are connected by a solid line. The
dashed line is a linear fit to the data with a slope of −0.08, and the circles are
generated from a simulated iPLL with correlation-based PD in response to a
frequency-modulated input spike train.

lags the reference input. Hence, we conclude that single oscillators are not
optimal for temporal decoding of the whisking-induced signals.

Since single neurons can be sensitive only to the phase, and not the co-
phase, of the external input, the PLL characterization theorem implies that
they can implement either ePLL with correlation-based PD or iPLL with
difference-based PDs. To be able to track frequencies below their sponta-
neous frequency (Ahissar et al., 1997), the single neurons should operate as
iPLL with difference-based PDs.

5 Summary and Discussion

5.1 Temporal Decoding Tasks. In the context of neural information
processing, temporal decoding refers to the ability to respond in a way that
is sensitive to the temporal pattern of neural activity, not just its average
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spike rate. This article addresses a specific temporal decoding task, which
is sensitive to the relative phase of an information-carrying signal (spike
train) relative to a periodic reference signal (periodic spike train). Phase-
decoding capabilities facilitate the interpretation of neural activity evoked
during active touch or active vision (Ahissar & Arieli, 2001). In such ac-
tive processes, the controlled movements of the sensory organs evoke the
reference spike train, while the sensed features of the environment evoke
the information-carrying signal. During whisking, for example, the sensory
organs are the flexible whiskers, which scan the environment rhythmically,
and the relevant feature is the position of an object in that environment. The
angle of contact, and thus the relative angular position of the object, can
be inferred from the phase along the whisking cycle at which the contact
occurred.

5.2 Temporal Decoding Capabilities of PLLs. PLLs are well-developed
electronic circuits designed to track periodic signals over a wide frequency
range with good noise-rejection performance. The output of the internal
oscillator reproduces a cleaned version of the original signal, while the PD
followed by a low-pass filter demodulates the input signal.

Similarly, neuronal PLLs may be used to track the period of the input
spike train and encode its variations in the output—the number of spikes per
cycle—of the PD. In this mode, the sensitivity of the PLL may be defined
as the change in the output of the PD induced by a small change in the
period of the input. Previous work (Zacksenhouse, 2001) indicates that the
sensitivity of the iPLL is relatively constant compared with the sensitivity
of single-neuron oscillators.

By tracking the frequency of the input, PLLs can also be used to detect
the relative phase of a novel input, and thus accomplish the phase-decoding
task, which is critical for the interpretation of active sensation, as discussed
above. Specifically, the PD decodes the phase of the novel input with re-
spect to the periodic activity of the internal oscillator. However, the internal
oscillator of an entrained PLL is phase-locked to the reference input, and so
the PLL indirectly decodes the phase of the novel input with respect to that
reference spike train. The performance of PLLs with respect to this task is
the focus of this article.

The four PLL variants, involving correlation- and difference-based PDs
with either inhibitory (iPLL) or excitatory (ePLL) connections, operate in
two locking modes, which are sensitive to either the phase or co-phase
of the input. In particular, the iPLL with correlation-based PD and the
ePLL with difference-based PD are sensitive to the co-phase of the input,
and thus establish a unique response pattern that cannot be produced by
single-neuron oscillators. The operating range over which the timing of the
novel input may be decoded with respect to the reference signal has been
determined and provides a design criterion for selecting the optimum PLL
variant that best matches the requirements for a given task.
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5.3 Circuit-Based versus Single-Neuron PLLs. The relationship be-
tween the operation of a single neuron and that of a phase-locked loop was
suggested and extensively explored in Hoppensteadt (1986). The cell body
is modeled as a voltage-controlled oscillator (VCO, equivalent to RCO here),
and the synaptic effect as a monotonically increasing nonlinear function of
the combined effect of the VCO and the external input. The resulting model
was shown here to be equivalent to either iPLL with a difference-based PD
or ePLL with correlation-based PD.

5.4 Temporal Decoding in the Vibrissal System. The hypothesis that
temporal decoding in the vibrissal system is facilitated by neural circuits
implementing PLLs has received substantial support from a range of obser-
vations: (1) existence of neural oscillators in the relevant range of frequen-
cies (Ahissar et al., 1997), (2) existence of PD-like neurons, which exhibit
frequency-dependent gated outputs (Ahissar et al., 2000), (3) phase locking
of oscillators and PD-like neurons to a range of input frequencies (Ahissar
et al., 1997), (4) monotonic direct relationships between input frequencies to
locking phases in both oscillators and PD-like neurons (Ahissar et al., 2000),
(5) monotonic inverse relationships between input frequencies to locking
spike counts in PD-like neurons (Ahissar et al., 2000), which depend on the
length of the stimulus burst (Ahissar et al., 2001; Sosnik et al., 2001), and
(6) estimated sensitivity that agrees with the observed marginal stability
(Zacksenhouse, 2001). In this article, we provide additional theoretical
support for this hypothesis based on the decoding range of the differ-
ent PLL variants. The nature of the temporal decoding task facing the
vibrissal system suggests that the widest detection and decoding ranges
may be achieved with the co-phase-sensitive PLLs, and those cannot be
implemented by single neural oscillators. Furthermore, new observations
from frequency-modulated experiments are described that support the hy-
pothesis that the vibrissal system implements iPLLs with correlation-based
PDs.

Control Capabilities of PLLs. Neural oscillators play an important
role not only in decoding but also in generating temporal patterns
(Zacksenhouse, 2001). In particular, networks of coupled oscillators are
assumed to generate patterns of rhythmic movements that underlie a di-
verse range of rhythmic tasks, including locomotion (Nishii, Uno, & Suzuki,
1994; Rand et al., 1986) and chewing (Rowat & Selverston, 1993), for exam-
ple. These networks can generate the patterns of activity even in the absence
of any sensory feedback, and thus are referred to as central pattern gener-
ators (CPGs). However, feedback may still play an important role in these
tasks (Ekeberg, 1993; Grillner et al., 1995) and in particular in tasks that
involve open-loop unstable dynamical systems.

The closed-loop control of such tasks, and in particular the control
of yoyo-playing with oscillatory units, revealed additional advantages of
PLLs over single-neuron oscillators (Jin & Zacksenhouse, 2002, 2003). In
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this application, the neural oscillator determines when to start the upward
movement and receives a once-per-cycle input at a characteristic phase of
the movement, when the yoyo reaches the bottom of its flight. As discussed
here, single neural oscillators, or single-cell PLLs, may establish only input-
lagging phase relationships, while neural network PLLs may also establish
a unique input-leading phase relationship. The latter was demonstrated to
have critical control advantages, which are essential in the context of yoyo
playing (Jin & Zacksenhouse, 2002, 2003). Thus, the unique temporal detec-
tion characteristics of circuit PLLs also provide control capabilities beyond
those of directly coupled neural oscillators.
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