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a b s t r a c t

A curious agent acts so as to optimize its learning about itself and its environment, without external
supervision. We present a model of hierarchical curiosity loops for such an autonomous active learning
agent, whereby each loop selects the optimal action that maximizes the agent’s learning of sensory-
motor correlations. The model is based on rewarding the learner’s prediction errors in an actor-critic
reinforcement learning (RL) paradigm. Hierarchy is achieved by utilizing previously learned motor-
sensory mapping, which enables the learning of other mappings, thus increasing the extent and diversity
of knowledge and skills. We demonstrate the relevance of this architecture to active sensing using
the well-studied vibrissae (whiskers) system, where rodents acquire sensory information by virtue of
repeatedwhisker movements. We show that hierarchical curiosity loops starting from optimally learning
the internalmodels ofwhiskermotion and then extending to object localization result in free-airwhisking
and object palpation, respectively.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A curious agent, animal, human or robot, interacts with its envi-
ronment in order to learn cause and effect relations. The first stage
of this interaction is to learn its own body, how it moves and acts
when commands are sent to its actuators. Next comes interaction
with the external environment, where sensory-motor correlations
are learned with increasing complexity. This hierarchical structure
of actively learning the environment is ubiquitous in biological
systems.

Furthermore, the first stages of this bottom-up construction is
usually formed by autonomous learning, i.e. there is no external
teacher. Only internally accessible information, such as reafferents
from the sensors and efference copy of the motor commands,
are used to learn the dynamical relations of interaction with the
environment.

Active sensing is one way for acquiring this information, by
controlling the sensor and moving it in order to better learn the
environment (Ahissar & Arieli, 2001). However, in order to use the
sensor effectively, the agent must first learn the internal dynamics
of the sensor, composing the first stage in the hierarchy.

The question then arises: what is the optimal way to move
in order to expedite the learning process in each level of the
hierarchy? Previously (Gordon & Ahissar, 2011), we showed that
the paradigms of active sensing and autonomous learning with
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reinforcement learning can be combined. Here, we present the
basic curiosity loop in which the optimal actor, or action policy, is
found thatmaximizes the learning process by rewarding a learner’s
prediction error in an intrinsic-reward (Oudeyer, Kaplan, & Hafner,
2007) actor-critic architecture. Hierarchical buildup of such basic
loops is described, whereby each loop utilizes lower loops’
learners to increase the complexity of learned agent–environment
correlations. Each loop learns the optimal actions for its specific
learners, thus resulting in an increase in policy repertoire.

The hierarchical curiosity loop architecture requires delicate
inter-loop switching, both in the so-called developmental stage,
in which each loop’s optimal actor is learned, and the on-line
stage, in which the currently active policy is selected from the
repertoire of converged actors. The former switching is determined
by the converging properties of the actor-critic architecture, while
the latter switching is determined by the learners’ decreasing
prediction error.

We implement the suggested architecture on the well-studied
vibrissae system (Ahissar & Kleinfeld, 2003; Kleinfeld, Berg, &
O’Conner, 1999; Knutsen & Ahissar, 2009), whereby rodents use
their whiskers to actively sense their environment (Knutsen et al.,
2006; O’Connor et al., 2010; Szwed, Bagdasarian, & Ahissar,
2003; Venkatraman & Carmena, 2011). This system is relatively
simple, moving in one dimension (whisker’s azimuth angle
(Diamond, von Heimendahl, Knutsen, Kleinfeld, & Ahissar, 2008)),
yet complex enough to exhibit several stereotypical behaviors
(Grant, Mitchinson, Fox, & Prescott, 2009; Towal & Hartmann,
2008), such as periodic free-air whisking and object palpation. The
first level of the hierarchy is composed of the internal models of
the free-air whisker dynamics, e.g. the forward model that learns
to predict the angle of the whisker in the next time-step, and the
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inverse model that learns to predict the required action to bring
the whisker to a desired angle. We compare the resulting behavior
of each internal model curiosity loop, to that of a combined loop in
which both internal models are learned concurrently.

The second level of the vibrissae hierarchy is object localization,
in which touching an object results in contact information. The
loop attempts to find the whisker movement policy that optimizes
contact predictability or the touch forward model, i.e. given the
whisker angle and performed action, whether contact will occur.
We present both the isolated object localization loop, whereby
contact is given by a specialized touch sensor, and the hierarchical
architecture, whereby contact is given by deviation from the free-
air forward model, also known as angle absorption (Szwed et al.,
2003) and control is done via the whisker inverse model.

The entire process is completely autonomous, in the sense that
inter-loop switching, both in the developmental stage of converg-
ing actors, and the on-line switching in selecting the active policy,
is determined autonomously. The resulting behaviors of the vibris-
sae hierarchical curiosity loops are remarkably similar to the ob-
served stereotypical behaviors of rats. Namely, the internal model
is optimally learned by quasi-periodic whisking and object local-
ization is optimally learned by object palpation.

Thepresentedmodel suggests experimental predictions,mostly
in the developmental stage, and offers a unified paradigm for a
repertoire of the complex observed behaviors of rodents’ whiskers.
The paper is organized as follows: we first describe the basic cu-
riosity loop in Section 2 and then analyze the whisker’s internal
models loop in Section 3 and object localization loop in Section 4.
Section 5 describes the hierarchical loops architecture, followed by
its implementation on the vibrissae system in Section 6. We end
with discussion and conclusions in Section 7.

2. Basic curiosity loop

The basic curiosity loop is characterized by the correlation it
is constructed to autonomously learn. Augmenting the learner
with the critic-actor components of reinforcement learning results
in a closed learning loop, whose goal is to find the optimal
policy that maximizes the learning process. Thus, each loop’s
convergent dynamics result in a specific behavior which is tightly
related to the objective learnable correlation. We first explain
the concept of internally supervised learning with an emphasis
on internal models and then describe the basic architecture of
the curiosity loop, followed by a description of the explicit RL
model we use, namely, the incremental natural actor critic (iNAC)
(Bhatnagar, Sutton, Ghavamzadeh, & Lee, 2007). We end with a
novel continuous space continuous action implementation of the
actor and critic used in the rest of the paper.

2.1. Internally supervised learning and internal models

Internally supervised learning is defined by a learner that
attempts to learn an input (i) output (o) transformation: L(o|i;χ)
where χ are the tuned parameters. It is performed by presentation
of correct input–output pairs, called the training set. We use
supervised on-line learning algorithms to find the optimal
parameters χ∗ such that the generalization error is minimized,
i.e. L∗

= argmin


i


ôL(i)− o(i)

2, where o(i) is the correct

output and ôL(i) is the output calculated by the learner L. In
the on-line version, at each time step t , the presented output
ot is compared to the estimated output ôL(it), resulting in the
prediction error et = ôL(it)−ot . Depending on the specific learning
algorithm, the learner parameters χ are updated according to the
prediction error. Learning is defined as the change in the learner
parameters: the larger the prediction error, the bigger the change
to the parameters, resulting in the proverb ‘‘you learn from your
mistakes’’.

We focus on autonomous or internally supervised learning,
which means that the training set, i.e. the correct input–output
pairs, are internally accessible to the agent, without needing an
external teacher. The dynamic internal models of an active sensor,
e.g. the forward and inversemodels, are examples of such learnable
systems. The forward model (FM) predicts the future state of the
system st+1, given the current state st and the action performed
at : (st , at) → st+1. Learning the forward model means learning
the state-transition function. The inverse model (IM) predicts the
required action given the current state and the future desired
state: (st , st+1) → at . Learning the inverse model is usually much
harder than the forward model (Jordan, 1992; Nguyen-Tuong,
Peters, Seeger, & Scholkopf, 2008). These models are usually used
for trajectory prediction and planning for robotic arms (Behera,
Gopal, & Chaudhury, 1995; Ouyang, Zhang, & Gupta, 2006) or
description of internal models in the brain (Kawato, 1999; Lalazar
& Vaadia, 2008; Shadmehr & Krakauer, 2008). Many learning
algorithms have been developed for them (Cheah, Liu, & Slotine,
2006; Nguyen-Tuong et al., 2008; Ouyang et al., 2006; Wainscott,
Donchin, & Shadmehr, 2005). However, the training sets were
always composed of random presentation of input–output pairs.
The basic curiosity loop attempts to find the best input–output pair
presentation by selecting the appropriate actions.

2.2. Learner-critic-actor architecture

The goal of the basic curiosity loop is to autonomously and
actively learn a defined correlation in the best manner. This means
that the core of each loop is the learner, which attempts to map
presented input–output pairs via internally supervised learning
algorithm. To this end, we combine the reinforcement learning
paradigm with internally supervised learning. In conventional
reinforcement learning schemes, the reward function is externally
set, while in the autonomous curiosity loop the reward is
intrinsic. Thus one should define the correct reward function
whose maximization will result in a policy that facilitates optimal
learning. From the aforementioned proverb, one can heuristically
reason that maximizing (corrected) mistakes should optimize
learning. Explicitly, for each presented example, the learner has a
prediction error, i.e. the difference between the expected output
and the correct output. Sampling places of highest prediction error
guarantees that in each time step, the learner adjustsmaximally. To
formulate this heuristics in the reinforcement learning framework,
we set the reward to be the square of the learning error. In this
scheme, we have incorporated the reward into the system, i.e. it is
nowan internal reward, both controllable andmodifiable (Oudeyer
et al., 2007; Simsek & Barto, 2006). The curiosity loop thus
implements the reinforcement active learning (ReAL) principle,
i.e. actively learning via reinforcement of prediction errors (Gordon
& Ahissar, 2011).

We have chosen the actor-critic design of RL (see below),
in which the critic learns to predict the value of each state
and computes the temporal-difference (TD) error. The actor
learns, according to the TD error, to perform the actions that
will maximize accumulated future rewards. By incorporating the
learner into the scheme by virtue of intrinsic reward, we have
introduced a delicate interplay between the three approximators,
namely the actor, critic and learner. The actor, through the
selection of the appropriate action and the state-change induced
by the outside world, determines which new example is presented
to the learner. This, in turn, produces the prediction error which
not only modifies the learner parameters, but also determines the
intrinsic reward, which the critic now assimilates into its value and
advantage approximators. The critic completes the curiosity loop
by determining the TD error that updates both the critic and the
actor.
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2.3. Reinforcement learning: incremental natural actor critic

As opposed to supervised learning, where a sample of the cor-
rect input–output mapping is given, reinforcement learning at-
tempts to find the optimal action-selection policy that maximizes
cumulative future rewards. Actor-critic (AC) algorithms are based
on the simultaneous online estimation of the parameters of two
structures, called the actor and the critic. The actor corresponds
to an action selection policy, mapping states to actions in a prob-
abilistic manner. The critic corresponds to a value function, map-
ping states to expected cumulative future reward. Thus, the critic
addresses a problem of prediction, whereas the actor is concerned
with control. These problems are separable, but are solved simul-
taneously to find an optimal policy, as in policy iteration. In the
RL framework, the state, action and reward at each time t ∈

{0, 1, 2, . . .} are given by st ∈ S, at ∈ A and rt ∈ ℜ respec-
tively. The environment’s dynamics are characterized by state-
transition probabilities p(st+1|st , at), and single-stage expected
rewards r(s, a) = E [rt+1|st = s; at = a]∀st , st+1 ∈ S; ∀a ∈ A. The
agent selects an action at each time t using a randomized station-
ary policy, designated as the actor:

π(a|s) = Pr(at = a|st = s; λ) (1)

where λ are the actor parameters to be tuned. The long-term
average reward per step under policy π is defined as

J(π) =
lim T→∞

1
T
E


T−1
t=0

rt+1|π


. (2)

Our aim is to find a policyπ thatmaximizes the average reward, i.e.
π∗

= argmax J(π). In the average reward formulation, a policyπ is
assessed according to the expected differential reward associated
with states s or state-action pairs (s, a). For all states and actions,
the differential action-value function and the differential state-
value function under policy π are defined as

Q π (s, a) =

T
t=0

E [rt+1 − J(π)|s0 = s, a0 = a, π ] (3)

Vπ (s) =


a∈A

π(a|s)Q π (s, a). (4)

The critic attempts to learn the value function, V̂π (s; ν) by
tuning the parameters ν using

φν(s) = ∇ν V̂π (s; ν). (5)

The reinforcement learning algorithm we implement uses tempo-
ral difference (TD), here taken to be

δt = rt+1 − Ĵt+1 + V̂π (st; νt)− V̂π (st+1; νt) (6)

where Ĵt+1 is the estimated average reward, which is also updated.
We implemented the incremental natural actor-critic (iNAC)

algorithm, presented in Bhatnagar et al. (2007). While sev-
eral different AC update algorithms were presented, three with
natural-gradient and twowith the Fisher-informationmatrix, after
intensive numerical analysis, the natural-gradient AC with advan-
tage parameters has proven to be themost efficient andwill hence-
forth be used. The critic update state includes both the update of
the value νt and advantage parameterswt concurrently:

νt+1 = νt + αtδtφν(st) (7)

wt+1 =

I − αtψ(st , at)ψ(st , at)T


wt + αtδtψ(st , at) (8)

ψλ(s, a) = ∇λ logπ(a|s; λ) (9)

whereψλ(s, a) are compatible features derived from the actor. The
actor update thus depends on the advantage parameters:

λt+1 = λt + βtwt+1. (10)
In Eqs. (7)–(10) the step-size schedule for the critic and actor satisfy
the condition that the critic converges faster than the actor:

αt = α0


αc

αc + t

0.9

, βt = β0


βc

βc + t


. (11)

2.4. iNAC and learner

The curiosity loop is based on a learner that attempts to learn
the input–output correlation, where the input and output can
be defined in the space of states and/or actions. This learner
implements supervised learning algorithm, which inherently
calculates the prediction error. In the curiosity loop, this error is
used twice. It updates the learner parameters in the supervised
learning algorithm. It is also used as the intrinsic reward for the
RL algorithm in the following manner:

rt+1 = e2t =

ôL(it)− ot

2
. (12)

Although we implemented incremental NAC, and not episodic NAC
(Peters & Schaal, 2005), time has been segmented into episodes
to signify the developmental time axis of the process in which
the actor and critic has drastically altered through accumulated
changes. Each episode n = 1, . . . ,NE was composed of time-steps
τ = 0, . . . , T − 1 signifying the on-line time axis of the learning
process inwhich small changes are accumulated via the incremen-
tal NAC algorithm. While the actor and critic continuously change
throughout both the developmental and on-line times, i.e. each
time-step in each episode is the aforementioned t = 0, . . . ,NE ×T
parameter; the learner was reset at the beginning of each episode,
embodying the beginning of a newmap-learning sequence. For ex-
ample, the object localization curiosity loop is composed of many
episodes, each with a new position of the object, and hence a new
learned object localization map. However, the changes in the actor
and critic accumulated in an incremental manner in all episodes
and all time-steps. At the end of the run, i.e. after many episodes,
the assessment of the learned actor is done on an on-line time-
scale, i.e. the learner is reset and a new sequence using the learned
actor is performed, without changes to the actor or critic. The dy-
namics of this assessment sequence is then analyzed to evaluate
the functionality of the learned actor.

2.5. Implementation

We have implemented a novel continuous state continuous
action actor and critic configuration that drastically expedites
the convergence of the RL process. Showing comparative results
between this algorithm and other used is not the focus of the work
presented here and is beyond the scope of this paper. The novelty
rises from using a weighted sum of radial basis functions as an
approximator for both actor and critic, with tunable centers and
widths. The details of this novel approach are presented below.

Actor. The parameterized policy is a weighted sum of Na radial
basis functions (RBF):

π(a|s; λ) =


λ2amp

T
φ


s, a; λa,cen, λa,σ , λs,cen, λs,σ


λ2amp

T
φ̃


s; λa,cen, λa,σ , λs,cen, λs,σ

 (13)

φi


s, a; λ(i)a,cen, λ

(i)
a,σ , λ

(i)
s,cen, λ

(i)
s,σ


= exp


−


a − λ(i)a,cen

T
λ(i)a,σ


a − λ(i)a,cen


−


s − λ(i)s,cen

T
λ(i)s,σ


s − λ(i)s,cen


(14)

φ̃(s) =


∞

−∞

daφ(s, a) (15)
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whereλ(i)a,σ , λ
(i)
s,σ denote the ith RBFwidth around the central action

λ
(i)
a,cen and state λ(i)s,cen, respectively. This policy and its derivatives

can be solved analytically, hence greatly expediting the numerical
evaluations.

Critic. The critic feature functions are Nc RBFs,

V̂π (s; ν) = νTampξ (s; νcen, νσ ) (16)

ξj

s; ν(j)cen, ν

(j)
σ


= exp


−s


s − ν(j)cen

T
ν(j)σ


s − ν(j)cen


. (17)

The novel ability to learn the center and width of the RBFs
results in a need for only a small number of RBFs, even for high
dimensional actors, since most optimal actors can be represented
by a small number of RBFs yet in specific action-space locations.
This drastically reduces the computation time and the exponential
explosion of higher dimensional policies.

Learner. We have used a feed-forward neural network with
two input neurons, two hidden layers and one output neuron,
with linear, hyperbolic tangent and symmetric saturated linear
transfer functions, respectively. The supervised learning algorithm
is a standard gradient descent learning rule with adaptive learning
rate andmomentum. The algorithmwas implemented in C#, using
parallel processing on multiple cores to reduce the running time,
which was long due to the required averaging of the stochastic
actors.

In the results presented below, we compare the performance
of the learned actor after several developmental episodes to that
of a random actor, i.e. generation of uniformly distributed random
actions. Since one of our main goals is to develop an autonomous
architecture, the fully random actor is the only a priori actor that is
plausible for comparison. Any designed actor, e.g. a central pattern
generator or feedback loops, is not an eligible actor for comparison
since it is not learned or developed. The actors learned via the
curiosity loop always start from a random-like behavior, i.e. their
parameters are set such that a randomactionwill be produced, and
continue until their parameters converge.

In order to assess the performance of a given actor, we calculate
the dynamics of generalization error of the learner during the
assessment episode. The generalization error is given by the
difference between the true mapping, calculated from the given
world function, and the learnedmapping of the learner, over all the
phase-space (here it is a 40×40 equidistant points) of themapping.
Unless otherwise stated, the generalization error is averaged over
20 runs that start from different equidistant starting points.

3. Vibrissae internal models’ curiosity loops

We implemented the curiosity loop architecture in the rodent’s
vibrissae system, which implements active sensing via whisker
motion. In this section, we first present the numerical setup of the
vibrissae system, describing the relevant state and action spaces.
We then analyze three distinct basic curiosity loops of the internal
models (Shadmehr & Krakauer, 2008) of the whiskers, namely the
forward model loop, the inverse model loop and the combined
internal model loop.

As the most basic actions, we consider the motor commands of
motor-neurons that activatemuscles, whose contractionmove the
whisker follicle and with it, the whisker (Hill, Bermejo, Zeigler, &
Kleinfeld, 2008; Simony et al., 2010). The basic sensory information
is taken to be the whisker angle. While proprioception muscle
spindles have not been found in the internal muscle of the whisker
pad, whisking cells, i.e. sensory neurons that (approximately) code
angle position, have been reported (Szwed et al., 2003). Touch cells,
i.e. sensory cells that are activated during whisker touch of an
object, have also been found (Szwed et al., 2006), and we examine
their related loop in this section.
In the whisker context, the FM is imperative since there are
inherent delays in the whisker dynamics (Hill et al., 2008; Simony
et al., 2010), and stable control of such a highly non-linear system
requires efficient and accurate prediction. The inverse model
(IM) learns to anticipate the required motor command that will
achieve a desired angle. The IM, once learned, can serve as a
coordinate transformation of thewhisker dynamics, such that both
the sensory information and the actions are given in whisker
angle coordinates. One can learn the forward and inverse models
concurrently, since they do not depend on one another. A random
actor can accommodate learning both models (Wolpert & Kawato,
1998). Can a single curiosity loop for both learners, FM and IM,
outperform a random actor? To answer this question, we have
constructed a combined loop,where the intrinsic reward is the sum
of the square of both forward model and inverse model learners’
prediction errors.

These loops attempt to find the best policy that optimizes
learning motor command and whisker angle correlations, when
there are no external objects in the environment. The scenario in
which objects are actively sensed and localized is described in the
next section.

3.1. Numerical setup: the vibrissae system

The one-dimensional state-space is composed of the normal-
izedwhisker angle s(1)t = θt ∈ [−1, 1], where θ = ±1 corresponds
to a fully protracted (retracted) whisker. The one-dimensional
action-space is the normalizedmotor command to thewhisker fol-
licle and controls the velocity of the whisker, a(1)t = mt ∈ [−1, 1].
Theworld function (also known as state-transition or sensor trans-
formation function) is taken to be linear θt+1 = θt + Amt , while
keeping the state inside the state-space boundaries. Hence, de-
pending on A the forward and inverse maps may be saturated at
specific state/action areas.

To make the model more realistic, we have added internal
noise to both the sensed whisker angle and the sent motor
command. Hence, the simulated state-transition function is θt+1 =

θt + A

mt + ϵ(m)


and the sensed angle is given by θt + ϵ(θ),

where ϵ(m), ϵ(θ) ∼ uniform [−0.01, 0.01]. Furthermore, the world
function itself is random from episode to episode, reflecting
different whisker compliances resulting from e.g. whiskers’
changing length. Here we set A = 0.25 ·


1 + ϵ(A)


, ϵ(A) ∼

uniform[−0.25, 0.25].

3.2. The forward model loop

Fig. 1(a) shows the architecture of the forward model curiosity
loop. The algorithm was run for 10,000 episodes over which the
critic and actor were learned. Fig. 1(b–d) presents the analysis
of the assessment sequence, i.e. the on-line time steps after the
10,000 developmental episodes, with the converged actor. Fig. 1(b)
shows the learned mapping at the end of the sequence, where the
true forward model mapping, given by the world function with
A = 0.25 is a saturated linear mapping with two non-linear sharp
transitions that appear due to the bounded state-space. As can
be seen, the learner approximates the true forward model very
well. Fig. 1(c) shows the generalization error as a function of time
steps for the converged actor (black) and a random actor (gray).
As can be seen, the learned actor is significantly better than the
random one during the initial stages of learning, after which both
converge to a very good approximation of the true forward model.
A characteristic trajectory of the converged actor (black) and a
random actor (gray) is plotted in the upper panel of Fig. 1(d), and in
the lower panel the accumulated reward is shown, demonstrating
the fact that the learned actor indeed accumulates more reward,
i.e. more learning errors, than a random actor.
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Fig. 1. Forward model curiosity loop. (a) Loop architecture. (b) Learning forward model mapping, θt+1 is intensity coded. (c) Generalization error averaged over 20 actors
(standard-error too small to notice) for actors after 10,000 episodes (black) and random actors (gray). (d) Upper panel: a typical trajectory of the learned (black) and random
(gray) actors. Lower panel: accumulated reward of the same trajectory.
Fig. 2. Inverse model curiosity loop. (a) Loop architecture. (b) Learning inverse model mapping,mt is intensity coded. (c–d) similar to Fig. 2.
3.3. The inverse model loop

Fig. 2(a) shows the architecture of the inverse model curiosity
loop. Fig. 2(b) shows the learned mapping at the end of the se-
quence, where the true inverse model mapping, is also a saturated
linear mapping with two non-linear sharp transitions that appear
due to the bounded state-space, yet the transitions appear in the
center of the mapping, opposed to the forward model, Fig. 1(b).
As can be seen, the learner approximates the true inverse model
very well. Fig. 2(c) shows that such the converged actor general-
izes much better than the random actor. The reward accumulated,
i.e. the accumulated prediction error, is higher in the initial time
steps of the learning, Fig. 2(d) lower panel, thus emphasizing its
fast and drastic improvement over random actions.
3.4. The combined loop

One can learn the forward and inverse models concurrently,
since they are in the same level of hierarchy and do not depend
on one another. A different architecture may then arise, one that
receives rewards from both learners, but has a single critic and a
single actor, that try to optimize the concurrent learning of both
internalmodels. A random actorwill surely accommodate learning
both models, but can a single ReAL loop for both learners, FM and
IM, outperform a random actor?

To answer this question, we have constructed an architecture,
where the intrinsic reward is the sumof the square of both forward
model and inversemodel learners’ prediction errors, Fig. 3(a). Also,
the computed generalization error is the sum of the generalization
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Fig. 3. Combined internal models curiosity loop. (a) Loop architecture. (b) Generalization error averaged over 20 actors (standard-error too small to notice) for actors after
10,000 episodes (black) and random actors (gray). (c–e) Learned actors for the (c) forward model loop, (d) inverse model loop and (e) combined forward and inverse model
loops. Color codes probabilities of performing the actionsmt .
Fig. 4. Object localization curiosity loop. (a–d) similar to Fig. 2.
errors of both mappings. Fig. 3(b) shows that such an actor indeed
outperforms the random actor. The combined actor, Fig. 3(e),
presents the shared features of the FM, Fig. 3(c), and IM actors,
Fig. 3(d), yet the IM actor features are more prominent, since the
IM rewards are much larger than the FM rewards and hence have
more influence on the progression.

4. Active sensing loop: object localization

To obtain object location, a touch signal is added to the state-
space, s(2)t = ct ∈ {−1, 1}, which may originate from a touch
sensor (discussed in the current section) or from error in
the learned free-air forward model (discussed below). In both
schemes, the touch signal is binary, i.e. either there is touch with
an object or there is not, where the strength of the touch that
depends on its radial position along the whisker (Birdwell et al.,
2007) and on the force of thewhiskermuscles (Simony et al., 2010),
is neglected for simplicity. Object localization is defined here as the
forwardmodel of the touch signal, given the current whisker angle
and performed action (θt ,mt) → ct . We first discuss the scenario
where the touch signal originates from a touch sensor, i.e. it has an
external source.

Fig. 4(a) shows the architecture of the object localization curios-
ity loop. As can be seen, the actor receives non-Markovian informa-
tion fromprevious time-steps. Fig. 4(b) shows the learnedmapping
at the end of the assessment sequence. The true mapping, i.e. ob-
ject localizationmapping for an object in themiddle of thewhisker
field is confined to a small region around the object location and
has a step-like shape, where far from the object there is no touch
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Fig. 5. Object localization actors. (a) Object localization actor for 1st level curiosity loop, i.e. when touch is supplied by external touch signal via touch cells, Fig. 4(a).
(b) Object localization actor for 2nd level curiosity loop, i.e. when touch is given by error of learned free-air forward model and the output is the desired whisker angle
directed to the learned free-air inverse model, Fig. 6(a–b) left panel gives the probability for an action when there is no touch, ct = −1 and right panel when there is touch
ct = 1.
information and moving towards the object results in touch infor-
mation, since the whisker motion is blocked by the object. As can
be seen, the learner approximates the true mapping very well.

In this example, the whisker always started from full retraction
and the object was encountered during protraction. Hence, the
generalization error of the mapping is computed only on one
side that is determined by the initial state and the position of
the object. Fig. 4(c) shows that the learned actor significantly
outperforms the random actor. The actor used in this scenario
was a non-Markov actor, in which the action depends on the
current touch information and the previous actionπ (mt |ct ,mt−1).
Examining the trajectory of the learned actor, Fig. 4(d: upper
panel), reveals that this actor actively senses the object localization
linear separator. This palpation whisking, i.e. alternating between
touching and not touching the object, drastically increases the
accumulated rewards (prediction errors), Fig. 4(d): lower. The
learning curve in Fig. 4(c) shows an initial worsening and then
a drastic improvement in the generalization error. The former is
due to the fact that the actor has learned to protract until an
object is reached, avoiding an initial random exploration, which
results in delayed learning of the large no-touch area. Following
object-touch, which occurs after a small number of time steps,
the palpation behavior learns the linear separator of the touch
and no-touch areas and thus drastically reduces the generalization
error. The random actor, on the other hand initially learns the large
no-touch area, but due to a small number of touch events, fails
to converge on the right linear separator that defines the object
location.

The actor, shown in Fig. 5(a), where the left (right) panel
shows the action probabilities for no touch (touch), demonstrates a
negative feed-back behavior, where it protracts when not touching
an object and retracts when it touches. However, the fact that
the protraction is smaller than the retraction allows sampling the
two sides of the linear separator, namely, after a large retraction
follows two smaller protraction, the first without touch and the
second with, indicated by the arrows in Fig. 4(d): upper, inset.
Furthermore, the probability of slightly protracting after a large
protraction that induced touch, a non-Markovian feature, allows
sampling of the most non-linear feature, namely, the intersection
point of the linear separator with the object position atmt = θt =

0. Together, these unique features enable the active learning of the
object localization linear separator.

5. Hierarchical loops

After introducing the basic curiosity loop components, one can
next consider the buildup of hierarchical loops.

5.1. Architecture

We wish to start from the most basic possible loop and
investigate the possible formation of higher loops. The hierarchical
architecture of actively learning loops implies two types of loops,
depending on the learned correlations: a forward loop and an
inverse loop. The forward loop, based on the predictive forward
models, utilizes lower loops’ information to learn new correlations,
but with the same repertoire of actions. In RL jargon, this amounts
to a gradual increase in the state dimensionality. These states are
not in the physical world, e.g. new sensory information, but rather
new learned correlations that were previously ‘‘hidden’’ within
the motor-sensory information. For example, learning the forward
model of a rat’s whisker in free space, i.e. predicting the next
whisker angle given a motor command, can be utilized to learn
when the whisker has touched an object by comparing the learned
prediction of its anglewith the sensed angle. This is known as angle
absorption (Szwed et al., 2003) and is a new state of the system that
can be used for further learning.
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The inverse loop, on the other hand, utilizes lower loops
correlations to increase the repertoire of available actions. In RL
this amounts to a gradual increase in the action dimensionality.
Again, these new actions do not require new motor plants, but
rather they are new motor commands that use motor primitives
based on learned ‘‘hidden’’ correlations between the available
sensory-motor information. For example, learning the inverse
model of the rat’s whisker, i.e. what should the motor command
be in order to reach a desired angle, can be used as a new action in
higher loops. This means that higher loops’ action can be given in
whisker angle coordinates, instead of muscle motor commands.

The hierarchical curiosity loops paradigm results in an ever
increasing repertoire of states and actions available for the agents
for its use. Since each loop actively learns new correlations based
on lower loops that were already actively learnt, gradual change
in behavior emerges. The optimal action for learning each loop
can be drastically different, making the buildup of the hierarchical
structure of the network being accompanied by characteristic
behaviors.

5.2. Developmental inter-loop switching

Since there are many possible loops in different levels of the
hierarchy and each loop has its own actor, how is the transition
between one loop and the next determined? How does the system
autonomously know that the optimal actor has been reached? This
developmental inter-loop switching is easily determined within
the RL framework of TD learning, since the TD error indicates
whether convergence has been reached or not. Once the TD error
has gone below a certain low threshold and has stabilized there,
there is no more change in the actor-critic component, indicating
that reinforcement learning has ceased. This, in turn, can signal
the next loop to start its ReAL dynamics, until it too converges.
Hence, the inter-loop switching of the reinforcement learning part
is achieved by ordered gating determined by each loop’s TD-error.

Formally, we incorporate this switching by defining the average
TDof episode n, ⟨δ⟩n, a runningweighted average over episodes,1n
and a running weighted average of the difference, 1̃n:

⟨δ⟩n =

T−1
t=0

|δt | (18)

1n+1 = κ⟨δ⟩n + (1 − κ)1n (19)

1̃n+1 = κ̃ |1n+1 −1n| + (1 − κ̃) 1̃n. (20)

Here κ, κ̃ are the averaging weights. The loop has converged
when

1̃n/1n
 < 1threshold, i.e. when the average TD error in an

episode has changed very little, compared to its size. Thus, for
multiple-loop architecture, a developmental switching mecha-
nism operates by sequentially going from one loop to the next
whenever the former has converged. In a hierarchical configura-
tion, the sequence of loops must follow the hierarchy, i.e. lower
loops are learned before higher loops.

5.3. On-line inter-loop switching

Another type of inter-loop switching must be accounted for,
namely, the on-line gating between optimal actors, after they have
been learned. For example, once the optimal actor for the internal
models has been reached, as well as the optimal actor of the object
localization, how does the system autonomously determine if the
current internal models are the correct ones and can be used for
object localization? This on-line switching, between the optimal
actors is done by learner error’s gating, e.g. once the internalmodel
learners’ error has decreased below a certain threshold, the motor
commands’ control switches from the internal models’ actor to the
Fig. 6. Object localization hierarchical curiosity loop architecture.

object localization actor. Formally, the actor on-line switching is
implemented by defining a running reward average,

ρτ+1 = γ e2t + (1 − γ ) ρτ . (21)

When it decreases below a certain threshold, ρthreshold, the control
is switched to the next loop’s actor and the average reward is reset.
This can be continued for all loops in the hierarchy.

6. Vibrissae’s hierarchical loops

The lowest loops that autonomously and actively learn internal
models can be used by higher loops, e.g. object localization (Fig. 6).
Here,we show twomajor contributions of lower loops, namely, the
forward model increases the state-space, and the inverse model
increases or substitutes the action-space. (i) To demonstrate the
contribution of the forwardmodel, we consider the touch signal as
the error in the already learned free-air forward model:

ct =


1

LFM(θt ,mt)− θt+1
 > θthreshold

−1 otherwise. (22)

This signal means that if the difference between the predictions
of where the whisker should be and where it actually is, often
dubbed angle absorption (Szwed et al., 2003), is greater than a
certain threshold, there is contact with an object and a touch signal
is generated. If a good forwardmodelwas learnedwhen therewere
no objects, the appearance of objects in the whisker field, and the
fact that the whisker movement is blocked by the object, gives
the touch signal. Hence, the forward model, which was learned
in a lower loop, has increased the state-space from 1 (whisker
angle) to 2 (angle and touch signal). This is in contrast to the
external touch signal considered above, which can be mediated
by specialized touch cells. Here, the touch information is conveyed
by the same whisking cells, yet augmented by the learned free-air
forward model.

(ii) The inversemodel can substitute higher loops action-spaces,
i.e. change the actors’ output from motor command mt to the
desired whisker angle θ̂t+1. This means that higher loop actors will
change from π (mt |θt) → π


θ̂t+1|θt


and will send their output

to the inverse model LIM

mt |θt , θ̂t+1


that will in turn generate

the proper whisker motion.
One must also consider developmental inter-loop switching.

The TD-error of each loop can signal the transition between one
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Fig. 7. Hierarchical curiosity loops. (a) Stability of TD error and developmental switching between internal model curiosity loop (gray) and object localization curiosity loop
(black) as a function of episodes. (b) Execution trajectory as a function of time-steps for learning internal models (gray) and then on-line switching to object localization
behavior (black). Object position is indicated by dashed gray line. (c) Running reward average as a function of time-steps for internal models (gray) and object localization
(black), showing when on-line switching has occurred.
loop and another’s according to Eq. (6). Furthermore, once the
actors have been learned, an execution of the whole network is
performed, where the actors are switched on-line, according to
Eq. (21). In the example shown in Fig. 7, two loops, namely a
combined forward/inverse curiosity loop and an object localization
loop are sequentially switched by their respective TD-error,
Fig. 7(a). During the lower loop learning, an actor that optimizes
the learning of both the forward and inverse models is found,
similar to Fig. 3(e). After the TD error of that loop has stabilized,
the object localization curiosity loop commences and finds the
optimal actor for object localization, Fig. 5(b). The actor is described
by π


θ̂t+1|ct , θ̂t


, i.e. it is a non-Markovian actor that sends

the desired angle to the inverse model, based on the current
(binary) contact information and the previously-sent desired
angle. Comparing the object localization actors, when the touch
signal is internal vs. external, and the output ismotor command vs.
desired angle, one can see that the overall behavior is very similar,
as expected. The actor behaves as a feedback loop which protracts
the whisker when there is no touch and retracts it when there is
touch.

Once all the hierarchy levels actors have been learned,
an execution of the hierarchical loops is performed. Initially,
the internal models are learned using the lower level learned
actor. Once the running average reward has reached a certain
threshold, Fig. 7(c), the systemautomatically switches to the object
localization learned actor, until it too reaches the reward threshold.
The trajectory in Fig. 7(b) shows a typical on-line switching
between periodic whisking that optimizes internal model learning
and object palpation that optimizes object localization.

7. Discussion

We have presented a parsimonious model by which action of
a curious agent develops in order to optimize its autonomous
learning capabilities in a hierarchical manner. The model has an
innate (i.e. fixed) architecture, developmentally learned parame-
ters, and a hierarchical nature that enables scaffolding, i.e. map-
pings that are learned in low levels are used as components in
higher levels of the hierarchy (Weng, 2004). Each hierarchical
loop architecture is composed of learners (predictors), intrinsic
rewards and RL controllers, namely, critics and actors (Schmidhu-
ber, 2010). All the learners, critics and actors parameters are au-
tonomously learned during development. Hence the model does
not rely on external teachers, or on pre-designed behaviors, but
rather on the actor-critic-learner architecture that can be applied
to any autonomously learned mapping, using any internally su-
pervised mechanism (Ahissar, Abeles, Ahissar, Haidarliu, & Vaadia,
1998; Ego-Stengel, Shulz, Haidarliu, Sosnik, & Ahissar, 2001). The
implementation of the model presented here has two types of
predictors, namely, state and action predictors (forward and in-
verse models, respectively). The intrinsic reward is the (square of
the) prediction error. Finally, each hierarchical loop learns its own
critic and actor, where the latter controls (either directly or via
an inverse model) only external actions and not internal states
(Schmidhuber, 2010).

Equating the reward to the prediction error has its limitations.
For example, in an environment wherein one part is deterministic
while the other is mostly noise, the agent will remain in the
noisy regime, since its prediction error will always be high there
(Oudeyer et al., 2007). While the change in prediction error is
more commonly used (Oudeyer et al., 2007; Schmidhuber, 2010),
the prediction error suffices in the implementation described here
since themodelworld is not noisy and the predictors are capable to
learn their objectives. Furthermore, the hierarchical curiosity loop
architecture deals only with the exploration and not exploitation,
i.e. the only goal of the agent is to learn as much as possible and
not to utilize what it has learned to reach another goal. This was
important in order to completely distinguish between curiosity
and other drives that may promote behavior. In the vibrissae
system, we believe that curiosity is the most dominant drive since
it is a major active sense of the rat and hence one of its main
goals is to acquire as much information as possible. We believe
that other goals, such as hunger or fear, do not play a major role
in whisker dynamics and hence our model captures the essence of
the emergence of whisking.

The model describes the emergence of behavior and thus pro-
motes mainly developmental predictions, i.e. behaviors and their
underlying neural circuitry during the critical period of develop-
ment in pups. One straightforward prediction is that pups do not
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whisk periodically in free-air or palpate novel objects immediately,
i.e. once their whiskers are grown enough to reach objects, the
model predicts that their first behavior should be quasi-random.
This prediction has been recently supported in Grant, Mitchin-
son, and Prescott (2011). Furthermore, the converged behaviors
are strongly dependent on the experience of the pup, thus chang-
ing pups’ experience should produce different emergent behaviors.
For example, partially paralyzing the mystacial pad muscles dur-
ing development, i.e. reducing their responsiveness and contract-
ing strength, should result in a different free-air whisking when
they are adults, even if at adulthood there is no paralysis. Similarly,
affecting the sensory input during development, e.g. via pharma-
cological manipulations along the sensory pathway, should result
in markedly different behaviors in adulthood. Furthermore, pre-
venting whisker-object touch during development, e.g. by attach-
ing plastic cones to the snout, should result in the lack of palpation
behavior during adulthood. The analysis of pup whisker behavior
is in its infancy (Grant et al., 2011), but the rapid advancement of
tracking techniques can expedite the performance of the proposed
experiments.

The model also predicts novel neural circuitry during develop-
ment. In order to facilitate rewarding prediction error, there should
be a strong input connectivity to the rewarding system from inter-
nalmodel areas, e.g. cerebellum (Lalazar&Vaadia, 2008; Shadmehr
& Krakauer, 2008) and sensory perception areas, e.g. primary sen-
sory cortex. The model predicts that this connectivity should be
stronger during development to allow convergence of the stereo-
typicalwhisking behaviors apparent in adult rats. Furthermore, the
conveyed information in these connections should code error sig-
nals (Lalazar & Vaadia, 2008; Shadmehr & Krakauer, 2008). The
anatomical and functional circuitry of the developing pup ismostly
unknown, yet the underlying infrastructure for the proposed cu-
riosity loops should be evident to corroborate the proposedmodel.

The novel features of the work presented here are (i) a bottom-
up approach of actively learning basic correlations, such as internal
models, hence requiring continuous state and continuous actions,
in contrast to higher-level discrete states and actions (Barto, Singh,
& Chentanez, 2004; Oudeyer et al., 2007); (ii) implementation of
state-of-the-art RL algorithms with novel critic and actors with
high-dimensional continuous states and actions; (iii) a hierarchical
buildup of learned correlations, as opposed to segmentation of
the forward model into different subspaces (Oudeyer et al., 2007);
(iv) learning of both forward and inverse models that extend
both the states and actions repertoire, respectively, as opposed to
learning just the forward model (Barto et al., 2004; Oudeyer et al.,
2007); (v) example from the biological regime of active sensing
in whisking rats, showing that typical behaviors emerge from the
proposed model.

To summarize, we have introduced and analyzed the curiosity
hierarchical loop algorithm that combines the reinforcement and
active learning paradigms into a single framework and extends it
to bottom-up hierarchical loop architecture. By setting the reward
as the prediction error of another learner, we have shown that
ReAL results in actors that expedite learning compared to random
actions. We have implemented and extended the state-of-the-
art reinforcement learning algorithm iNAC and expanded it to
include the learner as the new reward function. We have also
presented examples of learning the forward and inversemodels. In
one case, namely, object localization, this trajectory could only be
produced by a non-Markov actor that depends on the current state
and the previous action. We have implemented the curiosity loop
framework on a simplified whisker model, which is commonly
used as an active-sensing model, and have shown that observed
behaviors of rats, e.g. free-airwhisking and active sensing by object
palpation, emerge naturally from the proposed model.
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