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Motor–sensory convergence in object
localization: a comparative study in rats

and humans
Guy Horev1,2,‡, Avraham Saig1,‡, Per Magne Knutsen1,3,‡,

Maciej Pietr1,†, Chunxiu Yu1,4 and Ehud Ahissar1,*
1The Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel

2Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
3Department of Physics, University of California, San Diego, La Jolla, CA, USA
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In order to identify basic aspects in the process of tactile perception, we trained rats and humans in
similar object localization tasks and compared the strategies used by the two species. We found that
rats integrated temporally related sensory inputs (‘temporal inputs’) from early whisk cycles with
spatially related inputs (‘spatial inputs’) to align their whiskers with the objects; their perceptual
reports appeared to be based primarily on this spatial alignment. In a similar manner, human sub-
jects also integrated temporal and spatial inputs, but relied mainly on temporal inputs for object
localization. These results suggest that during tactile object localization, an iterative motor–sensory
process gradually converges on a stable percept of object location in both species.

Keywords: behaviour dynamics; closed feedback loops; adaptive process; video-tracking;
sensory substitution; decision-making
1. INTRODUCTION
Perception, the process of grasping the environment, is an
active process involving both motor and sensory variables
[1–5], whereby animals actively move their sensory
organs to obtain information about the environment
[6–17]. Rodents, for instance, activelyemploy their whis-
kers in sweeping back-and-forth movements when
exploring their surroundings [18–20]. Primates employ
active eye and hand movements to scan and explore
remote and nearby environments [21,22]. In fact,
motion of the sensory organs (whiskers, eyes, fingers)
is required for perception to occur altogether; with-
out motion, stationary objects are not contacted and
stationary visual images hardly activate photoreceptors
[23–25].

In addition to a general requirement of sensor motion
for perception, the specifics of sensor movements [4]
may enhance the discriminative ability of observers. In
turn, afferent signals have a strong influence on motor
control of sensory organs [26]. These effects constitute
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an iterative process, whereby perception emerges from
an adaptive operation of motor–sensory loops, i.e.
loops that include sensory organs (we use the term
‘motor–sensory’ rather than ‘sensory–motor’ in order
to emphasize the fact that sensation of stationary objects
begins with sensor motion). During such iterative pro-
cesses, motor components probe the environment and
sensory components convey the results of this probing
[5]. In adaptive iterative processes, the motor probing
is expected to gradually converge towards the percep-
tion of external objects. Whisking is an example of an
iterative process, and it has been proposed that it is
adaptive in the sense that the motor–sensory feedback
optimizes sensory processing [27,28].

During horizontal object localization, both rats
[29,30] and mice [31] actively palpate objects with
their whiskers, typically across multiple whisking and
contact cycles. Both trained rats and mice can localize
objects along the horizontal dimension with a single
whisker intact and generally do so in an active
manner. In general, task performance is not degraded
when all but a single whisker are removed, and may
even improve in some cases [29]. This observation pre-
cludes whisker identity as a parameter required for
determining horizontal location. Instead, codes based
on relative temporal delays [10] or angular tuning [32]
most probably contribute to horizontal encoding.
Coding by time requires an accurate measurement of
the moment of contact relative to a temporal reference
point, such as the onset of whisker motion. During
This journal is q 2011 The Royal Society
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artificial whisking in anaesthetized rats, whisker motion,
contact and detach events are all reliably encoded by
primary trigeminal afferents, enabling precise neuronal
encoding of horizontal object location [33]. Unlike hori-
zontal localization, however, radial localization seems
to operate on different principles. Behavioural studies
demonstrate that rats require multiple whiskers and
neither use nor depend on active whisker movements
when localizing objects along the radial dimension
[34]. During artificial whisking, primary afferents vary
their firing rates as contacted objects are placed at dif-
ferent radial locations [35], suggesting a rate code of
radial object location [10]. The absence of whisker
movements during radial localization in rats does not
rule out adaptive processes, as head and body move-
ments are still required to enable contact between
whiskers and objects. The motor–sensory circuits, how-
ever, are likely to be different for radial and horizontal
localization.

Active exploration of an environment requires
dynamic interplay between motor components such
as reaching and palpation, as well as sensory
components such as proprioception and cutaneous
sensation. Interaction with a changing environment
requires an ability to adapt to these changes, which
requires some means for anticipating changing con-
ditions rather than reacting to changes in the
environment through error-detecting feedback loops
[36–38]. To reduce errors, the brain can learn antici-
pation errors in one cycle and modify the motor
commands that initiate the next cycle [39–41].

To date, there is little hard evidence for iterative
motor–sensory processes, partly owing to an empha-
sis on simple and stereotyped tasks explored in highly
trained animals. Previously, we have explored haptic
object localization in the rat vibrissal (whisker)
system [29] and in humans [42]. Rodent whisking
is a rhythmic motion in the absence of contact, and
can persist uninterrupted for tens of seconds or
longer. During object localization, however, whisking
bouts are significantly shorter and less spectrally pure
[29], leaving a brief window for observing adapt-
ive effects (approx. three to six whisk cycles). Our
human studies addressed some of the experimental
limitations encountered in rodent behaviour above
by developing a novel sense in humans, whereby sub-
jects were equipped with flexible fibre rods attached
to their fingertips and trained to localize vertical
poles using these whisker appendages while blind
and ear-folded. The fact that subjects had never pre-
viously been exposed to such a task allowed us to
study adaptive behaviour during learning. In both
tasks, subjects (rats and humans) achieved high
levels of performance (as measured by spatial
acuity). By construction, the two tasks were similar
and both rats and humans employed palpating
movements during performance of the task. Thus,
these experiments afforded us a unique possibility
to explore common aspects of an active perceptual
task in two different species.

Here, we describe the dynamics of the palpation
process in rats and humans in terms of motor–sensory
information about the location of two objects. The
task given to our rats and human subjects was a relative
Phil. Trans. R. Soc. B (2011)
localization task, where subjects had to discriminate
the relative spatial location of two vertical poles, one
placed on each side (right or left) of the subject. We
denote relative location here by Dx ¼ xright 2 xleft,
where x is the coordinate along the horizontal (pos-
terior–anterior) axis; subjects had to report whether
Dx was positive or negative. We explored two variables
that have previously been proposed as likely candidates
for perceptual cues underlying horizontal object local-
ization: (i) the temporal delay between bilateral
contacts (Dt), conveyed by tactile ex-afferent signals,
and (ii) the angular difference between the whiskers
(Da) at the moment of first contact with one of the
poles, conveyed by proprioceptive re-afferent signals
(figure 1 and electronic supplementary material,
movie S1).
2. MATERIAL AND METHODS
All experiments were conducted in accordance with
Institutional guidelines and were approved by the
Institutional review board.

(a) Behavioural data: rat

We revisited the dataset collected by Knutsen et al.
[29]. Behavioural data of four rats successfully
trained in a whisker-dependent relative object localiz-
ation task were used for the behavioural analysis. In
brief, the rats were water-deprived and trained
through multiple stages to approach two vertical
poles that were displaced relative to each other, at
varying offsets, along the anterior–posterior body
axis of the rat. The rats had to centre their head
between the two poles and learned to palpate the
objects with their whiskers in the dark, and to
report the identity of the closer pole in return for a
reward (water). The rats were initially trained with all
whiskers intact, and later tested with either a single
row or arc of whiskers and finally with only a single whis-
ker (always the whisker located in row C and arch 2)
intact on each side of the head. We tracked a total of
473 trials where the entire sequence of approach, whis-
ker–object contact and head-retraction was recorded by
a high-speed (1000 frames s21 [43]) video camera. For
the analysis presented here, we included a subset of
230 tracked trials, where at least three distinct move-
ment cycles with contact occurred. Two motor–
sensory variables were estimated from the whisker-
tracking data: (i) Dt is the difference in time between
bilateral contact onsets in each cycle and (ii) Da is the
angular difference between bilateral whiskers in the
first frame of any contact (left or right) in each whisking
cycle (figure 1a).

(b) Behavioural data: human

Twelve male and female human subjects were trained
in a novel haptic localization task [42]. In brief, elastic
polyvinyl chloride (PVC) rods were attached to the fin-
gertips on both hands. The rods were moulded into a
conical shape by heating and stretching. The diameter
of each whisker changed gradually from 1.8 mm at the
base to 1.2 mm at its end and their length was
34.5 cm. The rods’ stiffness was slightly softer than
that of a drinking straw, and they did not bend

http://rstb.royalsocietypublishing.org/
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Figure 1. Examples of data collected from behaving rats and humans. (a) Rat whisking and active touch. Whisker angle as a
function of time as calculated from tracked movement traces of the right (black) and left (grey) whiskers of a rat performing the

bilateral localization task, using one whisker on each side of the snout. Whisker angles relative to the line that intersects the
ipsilateral eye and nose (a1 and a2) and poles offset (Dx) are depicted in the right panel. Moments when the whisker touched
the pole are marked with a bold line on the angle traces and indicated by horizontal lines below. Dt is the time difference
between bilateral touch events. Da is the bilateral angle difference at certain time point. The Dt and Da depicted here are
from different cycles. Note that the whisker that touched the poles first in the first touch became the more posterior in the

last touch. (b) Human whisking and active touch. Hand angle as a function of time as calculated from traces of right
(black) and left (grey) PVC whiskers attached to a human performing the bilateral localization task.
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under their own weight when held horizontally. Rod
displacement and applied forces were measured with
accelerometers and force transducers located on the
fingers. Subjects were blindfolded and seated on a
chair in front of two vertical poles, one located on
each side (left and right). Subjects were instructed to
contact the poles only with the flexible rods and to
report the closest pole. The relative horizontal offset
of the poles was changed manually between trials ran-
ging between 20 and 1 cm following the same staircase
paradigm of the rats in Knutsen et al. [29]. After each
trial, the subjects received oral feedback (‘correct’ or
‘wrong’) from the experimenter. As with the rat data,
we estimated the motor–sensory variables, Dt and
Da, from the tracking of the flexible rods.
(c) Data analysis

We computed inter-variable correlations using Spear-
man’s correlation (Statistical Toolbox, MATLAB). The
average Rho was tested to be different from 0 using
t-test. The ability of Da and Dt to predict the behav-
ioural outcome in rat trials was tested using receiver
operating characteristics (ROC) analysis [44]. Briefly,
we apply n thresholds (tr1–trn) to Da or Dt and use
each threshold (tri; 1 � i � n) to construct a decision
criterion (e.g. ‘right’ if Da , tri, otherwise ‘left’). For
each threshold, we calculate true- and false-positive
rates from the subject’s report according to the
assumed criterion. A curve of true versus false rates
in all the n thresholds (the ROC curve) is then
computed and the area under this curve (AUC) is
calculated. A value of AUC ¼ 0.5 denotes chance
level prediction (i.e. the given variable cannot predict
subjects’ responses for any threshold, under the
assumed criterion) and AUC ¼ 1 denotes full predic-
tion (i.e. there exists a threshold tri for which the
Phil. Trans. R. Soc. B (2011)
given variable fully predicts subjects’ responses).
The probability p(AUC . 0.5) was computed using
confidence intervals as described in Hanley &
McNeil [45]. Overall, p-values were corrected for
multiple comparisons using the false discovery rate
(FDR) procedure [46]. Here, FDR ¼ X means that
the proportion of expected false discoveries is equal
to or smaller than X.
3. RESULTS
(a) Temporal delay between bilateral

contacts: rat

In trials where rats touched the poles at least three
times across three different movement cycles, we
measured the temporal delay between bilateral contact
onsets (Dt) during the first, second and last touch
events (see example in figure 1a). The correlation
between Dt and the difference in the horizontal pos-
ition of the poles (Dx) was calculated for each touch
cycle. In figure 2a, we present the correlation coeffi-
cient (Spearman’s Rho; black lines) between Dt and
the difference in the horizontal position of the poles
(Dx) as a function of cycle number in four individual
rats that performed the task with a single whisker
intact on each side of the face. In general, the correl-
ation between Dx and Dt tended to decrease along
the trial both during correct (figure 2a) and incorrect
(figure 2b) trials. Interestingly, in three rats (113,
114 and 137) this correlation was negative in the last
touch cycle in incorrect trials, suggesting that Dt was
a source of confusion for these rats. These results indi-
cate that while the rats coordinated the movements of
bilateral whiskers at the beginning of a trial such that
they were at the same angle at the same time and
thus Dt was correlated with Dx, they reduced this
coordination in later stages of the trial.

http://rstb.royalsocietypublishing.org/
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(b) Angular difference between bilateral

whiskers: rat

For the same rats and touch events, we measured the
angular difference between the whiskers (Da) at the
time of the first touch (left or right) in each (contacting)
cycle (figure 1a). Note that while Da was fully corre-
lated with Dx when both whiskers touched the poles
(by definition), this was not necessarily the case when
only one whisker touched a pole; Da upon unilateral
touch onset was determined by whisker coordination
and not by physical constraints enforced by the stimu-
lus. Figure 2 shows the correlation coefficients
between Da and Dx (grey lines) as a function of cycle
number for correct (figure 2a) and incorrect (figure
2b) trials. In general, the correlation between Da and
Dx was weak in the first contact and increased along
the trial. The increase in Da–Dx correlation reflects
the increased information about the environment that
was available to the rat in a given cycle before contact.
(c) Correlation between Da and Dt: rat

Because Dt correlated with Dx at the beginning of
the trial and Da correlated with it at later stages, it is
interesting to test if initial Dt affected later Da. Indeed,
Da in cycles 2 and onwards correlated with the Dt
that was measured in the first cycle (figure 2c). Interest-
ingly, Da did not depend on Dts that were measured in
later cycles (data not shown). Moreover, in incorrect
trials (dashed lines), the correlation between Da and
Dx was, in general, lower than that in correct trials
(solid lines). Again, the correlation between Dt and Da
was caused by the predictive alignment of the whiskers
before the physical contact with the pole. This finding
indicates that accurate representations of Dx are
developing in the rat brain during the trial.
Phil. Trans. R. Soc. B (2011)
(d) Correlation between perceptual cues and

perceptual reports: rat

Correlations between Da or Dt and the reports of the rats
were estimated by the area under the ROC curve (see
§2). This analysis suggests that rats based their reports
mainly on Da at the last contacting cycle (figure 3). As
expected from the correlations of the sensory cues
with the stimulus offset (Dx, figure 2), their correlations
with rats’ reports developed along the trial. In correct
trials, reports correlations with Dt decreased and those
with Da increased (figure 3a). The analysis of incorrect
trials reveal opposite trends and suggests that, at least in
some trials, the rats considered Dt in the last contacting
cycle instead of Da; using Dt, however, was associated
with increased error rates owing to the misalignment
of the whiskers (figure 3b).
(e) Perceptual cues during human whisking

Examining Da and Dt parameters in correct and incor-
rect trials in humans performing the same bilateral
localization task, scaled to human size and using artifi-
cial whiskers attached to individual fingers [42]
revealed correlation patterns that resembled those of
the rats (figure 4a,b). The major difference, however,
was that although the correlation between Da and Dx
increased along the trial, that between Dt and Dx
increased as well (in correct trials, figure 4a). In
addition, whereas the Da–Dx correlation in correct
trials was smaller than that in incorrect trials, the
Dt–Dx correlation was higher in correct versus incorrect
trials. This is consistent with our human subjects using
Dt, rather than Da, as their primary perceptual cue.
Despite that, Da became more and more correlated
with the initial Dt along the trial (figure 4c). This
suggests that despite the temporal strategy employed

http://rstb.royalsocietypublishing.org/
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by our human subjects, they did not eliminate an appar-
ently automatic process in which Da represented Dx
more and more accurately as the trial proceeded.

(f) Correlation between perceptual cues and

perceptual reports: human

Correlations between Da or Dt and the reports of the
humans were also estimated by the area under the ROC
curve (see §2). Unlike rats that based their reports on
spatial (proprioceptive) cues, humans based their reports
mainly on Dt at the last contacting cycle (figure 4d,e).
In correct trials, reports’ correlations with Dt increased
between cycles (figure 4d). The analysis of incorrect
trials suggests that, in some trials, the humans considered
Da in the last contacting cycle instead ofDt; usingDa, how-
ever, was associated with increased error rates (figure 4e).

4. DISCUSSION
Here, we have demonstrated signatures of a convergence
process in object localization by whisking in rats and
Phil. Trans. R. Soc. B (2011)
humans. In both rats and humans, performing the
same bilateral localization task, information on pole
offset (Dx) was initially higher in the bilateral temporal
offset (Dt). In both rats and humans, information carried
by the whiskers’ angular offset (Da) on Dx increased in
successive cycles. The major difference between rats
and humans was that at the end of each trial, before
the perception was reported, Da was more informative
in rats, whereas Dt was more informative in humans.
This is consistent with rats basing their correct reports
primarily on Da and humans on Dt. Evidence suggests
that part of their errors stemmed from relying on the
less-reliable variables (Dt in rats and Da in humans).
Interestingly, despite their apparently different report
strategies, in both rats and humans, the correlation
between initial Dt and later Da increased monotonic-
ally along the trial, suggesting that at least part of the
convergence process is automatic.

Automatic convergence processes are also sup-
ported by the behaviour of individual neurons in the

http://rstb.royalsocietypublishing.org/
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thalamus and cortex of the anaesthetized, artificially
whisking rat, which exhibit stabilization dynamics
[47,48]. It is assumed that once the network reached
steady-state, information gain becomes low and a
behaving rat would exit the mode of information
accumulation and move on (or report its perception
if it is involved in such a task). This is consistent
with the observation that rats report their perception
in this task after approximately four contacting cycles
on average [29].

When an external object is continuously present,
subjects usually use at least a few tenths of a second
to perceive it [6,20–22,49]. Importantly, perceptual
acuity usually increases with increased brain–object
interaction time [49–54]. Our results suggest that
such improvements result from a process in which
the brain converges upon accurate perception using
motor–sensory loops.

These results are consistent with perception emerging
from a convergent process, which is primarily based not
only on motor–sensory dynamics [55], but probably
also includes local network dynamics [56,57]. During
this process, motor and sensory variables gradually
change until a percept emerges. The rules governing
these dynamics are not yet known. Yet, in a simple
task such as the horizontal localization task studied
here, simple convergence dynamics that aimed at nullify-
ing a single variable (Dt in rats or Da in humans) could
be identified. These observations encourage us to believe
that the rules controlling convergence dynamics in other,
more complex perceptual tasks are also traceable.

Together, these experiments show that haptic per-
ception with whiskers is a dynamic and iterative
process. Both rats and humans use iterative processes
to establish stable representations of object location.
Given that these representations depend critically on
whisker movements, and whisker movements change
from trial to trial, it is suggested that the neuronal rep-
resentations converged upon in each trial are not fixed.
That is, they change from trial to trial. As perceptual
reports are consistent between trials, it is suggested
that what determines perceptual reports are not
internal neuronal representations per se, but rather
the relationships between these representations and
the motor–sensory patterns converged upon [5].
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