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Reinforcement learning: finding correct
action by trial and error
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Reinforcement learning
the basics

Supervised learning —

all knowing teacher, detailed feedback
Reinforcement learning —

scalar (correct/incorrect) feedback
Unsupervised learning —

self organization



Reinforcement learning: The law of
effect

“The Law of Effect is that: Of
several responses made to the
same situation, those which are
accompanied or closely followed
by satisfaction to the animal will,
other things being equal, be more
firmly  connected  with the
situation, so that, when it recurs,

they will be more likely to recur”
Edward Lee Thorndike (1911)
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Early attempts at modeling

l. P. Paviov

1ati CONDITIONED
e By associative rules Hepehs

e Classical conditioning
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Classical conditioning

l. P. Paviov
The Elements: CONDITIONED
REFLEXES

US: Unconditioned stimulus
UR: Unconditioned response
NS: Neutral stimulus
CS: Conditioned stimulus
CS1: Conditioned stimulus 1
CS2: Conditioned stimulus 2
CR: Conditioned response
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Properties of classical conditioning

(Paviov 1927)

* Acquisition.

e Partial Reinforcement (probabilistic).
 Generalization.

e Interstimulus Interval (ISI) effects.
* Intertrial Interval (ITI) effects.



So far...

* A simple association (coincidence, Hebbian)
model can explain the phenomenon.
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Properties of classical conditioning
(Cnt’d)

 Conditioned Inhibition

e Latent Inhibition

* Relative validity (Wagner 1968).
e Blocking (Kamin 1968)

CS must RELIABLY predict US



Which simple association can’t explain

Learning occurs not because two
events co-occur, but because that
CO-occurrence Is otherwise
UNPREDICTED



Rescorla-Wagner rule (1972)

Learning to predict reward R given stimulus U=1
Goal: Form a prediction V of the reward of the

fo rm: Where:

U=CS availability (0,1);

V=wU V=reward prediction:
R=reward availability (0,1) :

And |earn to change w w = weight of the connection
between U and V

— € = learning rate
Aw _E(R_V) U R-V = prediction error

After learning of consistent pairing: w=R



Blocking with Rescorla Wagner

Given U1, U2 and R, after U1l has been learnt:

s

Prediction error: R-V=0
And no learning occurs for w2



The real challenge faced by the nervous system
is to select a motor response (to make a
decision) that maximizes evolutionary fitness

under conditions of uncertainty
Glimcher, 2004



MatChing IaW (Herrnstein 1961)

Experimental data
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Critical problems, for control

1. Exploration/exploitation

lll!lul:l-l:ln-ill
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http://www.jneurosci.org/content/vol27/issue9/cover.shtml

Solutions, for control

1. Variability in response policy

1. Greedy € = Random
gambling)

2. Based on expected return
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Decision behaviour, theory and

. practice
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Monkeys’ decisions: probability matching
1

R - reinforcement rate

R=0.884

0 | T ﬂIE' '.. 1
Rnghtf{Hnght + Rleﬂ]
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... whether optimal or not

e Actions are related to their consequences



Critical problems in
reinforcement learning (and in
Rescorla-Wagner)

2. Temporal credit assighnment

o j; TN
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TD learning - solution for temporal
credit assighment

1. Estimate value of current state (v=r+ y'r ) :
(discounted) sum of expected rewards

2. Measure ‘truer’ value of current state:
reward at present state + estimated value of
next state (r+ V..,

3. TDerror o,=r+WN,, -V,
4. Use TD error to improve 1 (Vx1=Vir+y §)

where:V, _ e Of the state reached at time t in iteration k
r, = reward given at time t; # = learning rate, 6 = prediction error
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TD error:

stimulus (t)

reward (t)

value (t)

value (t+1)

TD error (t)

time
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TD error: o, =N, -V, +T,

stimulus (t)—/\

reward (t)

value (t)

value (t+1)

TD error (t)

time >
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Basal ganglia - anatomy

» The Basal Ganglia

June 16
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Primary

The midbrain dopamine system
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Dopamine and acetylcholine meet in the
striatum

A28.2 AC+4 8
A:23.7
Mn109
M. Mulatta
Dopamine : Acetylcholine

Figure 413
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Facts to remember (1)

e Basal ganglia receive cortical input
* Basal ganglia project to frontal cortex
e Dopamine and acetylcholine localization



The midbrain dopamine system
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No prediction
Reward occurs

TD error (t) _A_
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Probabilistic instrumental
conditioning task

start
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DA response
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Dopamine population response-
cue
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Dopamine population response-
reward
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Dopamine population response —
reward omission

Spikes/S
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June 16 Weizmann systems

2.5

(]

oh

e

3

&P 0.5
®

15 e |
025 05 D75 1

Conditional reward probability

34



Instrumental conditioning - results

e Responses to visual cue are correlated with
future reward probability

 Responses to reward are inversely
correlated with reward probability

e Responses to reward omission are
indifferent to reward probability

& Dopamine neurons provide an accurate TD
signal (but only in the positive domain)



... and it can cause long term
plasticity of cortico-striatal synapses

a
= ® ICSS +current(n =7)
+404 A ICSS + current + SCH23390 (n = 5)

-

[ Cortical
neuron o4

Striatum w
' 0)
3 ' adn

+30

ntage change in PSP slope
— no
o o
L 1 1 1

Ctx S
L) - i T
. Striatal spiny 0- o— 20— ‘;%_ i __L
neuron 8 I 1 { \_
_ g -
S —H/ Stimulating 101
Popamine I\O) glecirode T
neuron - .
Subgans SR U R T R SR R T
nigra 20 -15 10 - +5  +10 +15 +
D1/5 Time in relation to ICSS-like stimulation (min)
\ ’Lrl Reynolds et al, A cellular mechanism of reward-related learning Nature 413,
67 - 70 (2001)

June 16 Weizmann systems 36



... and it can cause long term
plasticity of cortico-striatal synapses

II-
i 1 "ﬁ".."#'h :
] l Il'.q-|"F_||h.|| H'|' e -
L] S LT~
: el L
= e : . L
n B B
| Rl it e +"-'f:"*'+'"-' B A s
LR 2
Ls |-I.l " F —il
g P o e T (TP

une 16 Weizmann systemShen et al., 2008 37



Facts to remember 2

DA neurons provide a TD error signal
e To the cortico (state) striatal (action) synapses
 And DA modulates synaptic plasticity



Control - Adding action

Agent Environment

< State

The agent has to:

— Learn to predict reinforcement state value

— Know the state-action-state transitions behavioural
policy
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Alternatively — reinforce action

[ O N\

No explicit knowledge about the future
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Solution 1: actor/critic networks

Actor Action >
a

™ Environment

Critic

e




How can the dopamine signal
contribute to decision behaviour?

Ctx
 Long term policy-shaping ‘
effect ~ @
through synaptic plasticity
AR AR
e |mmediate effect on action
. 1
action —mo(t)+b
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Lost in translation?

X

dopamine

plasticity in
response action circuits
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Monkeys’ decisions: shaping by dopamine

05
Dright/( Dright + Dies)
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Dopamine neurons during decision

| stimulus | | action

A OC

= reference
= decision
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Are DA neurons aware of future choice

mm Hi (explore)
== Lo (exploit)
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The learning is of state-action values

10y

25 50 75 100
action value action value

response (spikes/s)
e
Mi
L
s B
=
-..d
L
=
=
= N

i
% R=047

50
action '1.|I'EI|UE




Adding an internal model

[ O N\

* No explicit knowledge about the future is necessary
e But what about planning?
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Reinforcement devaluation —
evidence for model
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Planning and decision making

Model Freg Learning

dopamine neurons report an error
in the prediction of reward?
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Model based learning

Creating an internal model
of the environment

Supported by PFC and Nac
Where is the model?

How is it learnt?



A cognitive map of space in the brain?
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* Not everything is stimulus response A
» Rather, there are internal representations
» Cognitive maps as an example of an internal/mental representation

Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189-208.



Model based learning

We believe that in the course of learning something
like a field map of the environment gets established
in the rat's brain... Although we admit that the rat is
bombarded by stimuli, we hold that his nervous
system is surprisingly selective as to which of these
stimuli it will let in at any given time... Rather, the
Incoming impulses are usually worked over and
elaborated in the central control room into a
tentative, cognitive-like map of the environment. And
it IS this tentative map, indicating routes and paths
and environmental relationships, which finally
determines what responses, if any, the animal will
finally release.

Cognitive maps of rats and men (1948)
The Psychological Review, 55(4), 189-208
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Model based learning

We believe that in the course of learning something
like a field map of the environment gets established
in the rat's brain... Although we admit that the
rat is bombarded by stimuli, we hold that
his nervous system is surprisingly selective
as to which of these stimuli it will let in at
any given time... Rather, the incoming impulses
are usually worked over and elaborated in the
central control room into a tentative, cognitive-like
map of the environment. And it is this tentative map,
indicating routes and paths and environmental
relationships, which finally determines what
responses, if any, the animal will finally release.

Cognitive maps of rats and men (1948)
The Psychological Review, 55(4), 189-208
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Model based learning

We believe that in the course of learning something
like a field map of the environment gets established
in the rat's brain... Although we admit that the
rat is bombarded by stimuli, we hold that
his nervous system is surprisingly selective
as to which of these stimuli it will let in at
any given time... Rather, the incoming impulses
are usually worked over and elaborated in the
central control room into a tentative, cognitive-like
map of the environment. And it is this tentative map,
indicating routes and paths and environmental
relationships, which finally determines what
responses, if any, the animal will finally release.

Cognitive maps of rats and men (1948)
The Psychological Review, 55(4), 189-208
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