Genela Morris
Dept. of Neurobiology Haifa University
gmorris@sci.haifa.ac.il
the role of dopamine in planning and action
ON NEURAL CORRELATES OF REINFORCEMENT LEARNING

Suggested reading

- Dayan P and Abbott LF. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge MA (2001): Ch. 9
- Barto AG \& Sutton RS. Reinforcement Learning: An introduction. MIT Press, Cambridge MA (1988) : Ch. 3, Ch. 6 + some of Ch. 2
- Schultz W, Dayan P, Montague PR (1997), A neural substrate of prediction and reward, Science 275: 1593-1599
- Figures from research papers are referenced throughout the presentation

Reinforcement learning

the basics

Supervised learning all knowing teacher, detailed feedback Reinforcement learning scalar (correct/incorrect) feedback
Unsupervised learning self organization

Reinforcement learning: The law of

 effect"The Law of Effect is that: Of several responses made to the same situation, those which are accompanied or closely followed by satisfaction to the animal will, other things being equal, be more firmly connected with the situation, so that, when it recurs, they will be more likely to recur"

Early attempts at modeling

- By associative rules
- Classical conditioning

Properties of classical conditioning

(Pavlov 1927)

- Acquisition.
- Partial Reinforcement (probabilistic).
- Generalization.
- Interstimulus Interval (ISI) effects.
- Intertrial Interval (ITI) effects.

So far...

- A simple association (coincidence, Hebbian) model can explain the phenomenon.

- Acquisition.
- Partial Reinforcement (probabilistic).
Generalization.
Interstimulus
Interval (ISI) effects.
- Intertrial Interval (ITI) effects.

Classical conditioning

The Elements:
US: Unconditioned stimulus UR: Unconditioned response NS: Neutral stimulus
CS: Conditioned stimulus

CS1: Conditioned stimulus 1
CS2: Conditioned stimulus 2
CR: Conditioned response

Properties of classical conditioning

(Cnt'd)

- Conditioned Inhibition
- latent inhibition
- Relative validity (Wagner 1968).
- Blocking (Kamin 1968)
-

CS must RELIABLY predict US

Which simple association can't explain

Learning occurs not because two events co-occur, but because that co-occurrence is otherwise UNPREDICTED

Rescorla-Wagner rule (1972)

Learning to predict reward R given stimulus $\mathrm{U}=1$
Goal: Form a prediction V of the reward of the form:
$\mathrm{V}=\omega \mathrm{U}$ Where:
$U=C S$ availability $(0,1)$;
$V=$ reward prediction:
$R=$ reward availability $(0,1)$:
And learn to change ω :
$\Delta \omega=\varepsilon(R-V) U$
$\omega=$ weight of the connection between U and V
$\varepsilon=$ learning rate
$R-V=$ prediction error
After learning of consistent pairing: $\omega=R$

Blocking with Rescorla Wagner

- Given U1, U2 and R, after U1 has been learnt:
- $\omega 1=R$
- $V=\underbrace{\omega 1 U 1}_{R}+\underbrace{\omega 2 U 2}_{0}$
- Prediction error: $\mathrm{R}-\mathrm{V}=0$

And no learning occurs for $\omega 2$

Critical problems, for control

1. Exploration/exploitation

Solutions, for control

1. Variability in response policy
2. Greedy $\longleftarrow \rightarrow$ Random (gambling)
3. Based on expected return

Decision behaviour, theory and practice

Monkeys' decisions: probability matching

... whether optimal or not

- Actions are related to their consequences

Critical problems in

 reinforcement learning (and in Rescorla-Wagner)2. Temporal credit assignment

TD learning - solution for temporal credit assignment

1. Estimate value of current state $\left(V_{t}=r_{t}+\gamma^{\prime} r_{t+1}+\ldots\right)$: (discounted) sum of expected rewards
2. Measure 'truer' value of current state: reward at present state + estimated value of next state $\left(r_{t}+\gamma V_{t+1}\right)$
3. TD error $\delta_{t}=r_{t}+\gamma V_{t+1}-V_{t}$
4. Use TD error to improve $1\left(V_{t}^{k+1}=V_{t}^{k}+\eta \delta_{t}\right)$
where: $V_{t=\text { value }}$ of the state reached at time t in iteration k
$r_{t}=$ reward given at time $t ; \eta=$ learning rate, $\delta=$ prediction error

TD error: $\quad \delta_{t}=r_{t}+\gamma V_{t+1}-V_{t}$

time

TD error: $\quad \delta_{t}=\gamma V_{t+1}-V_{t}+r_{t}$

Basal ganglia - anatomy

- The Basal Ganglia

Intracranial self stimulation

The midbrain dopamine system

Dopamine and acetylcholine meet in the striatum

Monkey

Mouse

Facts to remember (1)

- Basal ganglia receive cortical input
- Basal ganglia project to frontal cortex
- Dopamine and acetylcholine localization

The midbrain dopamine system

No prediction
Reward occurs

Reward predicted

Reward predicted
No reward occurs

Schultz et al,
J. Neurosci 13:

900-913,1993

Probabilistic instrumental conditioning task

Morris et al., Neuron 43(1): 133-143, 2004

DA response

$$
\begin{array}{lll}
\text { DA } \\
\text { A }
\end{array}
$$

Dopamine population response-

cue

Dopamine population responsereward

Dopamine population response reward omission

Instrumental conditioning - results

- Responses to visual cue are correlated with future reward probability
- Responses to reward are inversely correlated with reward probability
- Responses to reward omission are indifferent to reward probability
- Dopamine neurons provide an accurate TD signal (but only in the positive domain)

... and it can cause long term plasticity of cortico-striatal synapses

Reynolds et al, A cellular mechanism of reward-related learning Nature 413, 67-70(2001)

... and it can cause long term

 plasticity of cortico-striatal synapses

F
B

Shen et al., Science 321:848-851 2008

Facts to remember 2

- DA neurons provide a TD error signal
- To the cortico (state) striatal (action) synapses
- And DA modulates synaptic plasticity

Control - Adding action

The agent has to:

- Learn to predict reinforcement
state value
- Know the state-action-state transitions behavioural policy

Solution 1: actor/critic networks

How can the dopamine signal contribute to decision behaviour?

- Long term policy-shaping effect
through synaptic plasticity

- Immediate effect on action
Paction =

Monkeys' decisions: probability matching

The two armed bandit task

Morris et al., Nature Neurosci 9: 1057-1063, 2006

Monkeys' decisions: probability matching

Lost in translation?

Monkeys' decisions: shaping by dopamine

$D_{\text {right }} /\left(D_{\text {right }}+D_{\text {leff }}\right)$

Dopamine neurons during decision

Are DA neurons aware of future choice

The learning is of state-action values

