Genela Morris
Dept. of Neurobiology
Haifa University
gmorris@sci.haifa.ac.il

the role of dopamine in planning and action

ON NEURAL CORRELATES OF REINFORCEMENT LEARNING

Suggested reading

- Dayan P and Abbott LF. Theoretical Neuroscience:
 Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge MA (2001): Ch. 9
- Barto AG & Sutton RS. Reinforcement Learning: An introduction. MIT Press, Cambridge MA (1988): Ch. 3, Ch. 6 + some of Ch. 2
- Schultz W, Dayan P, Montague PR (1997), A neural substrate of prediction and reward, Science 275: 1593-1599
- Figures from research papers are referenced throughout the presentation

Reinforcement learning the basics

Supervised learning —
all knowing teacher, detailed feedback
Reinforcement learning —
scalar (correct/incorrect) feedback
Unsupervised learning —
self organization

Reinforcement learning: The law of effect

"The Law of Effect is that: Of several responses made to the same situation, those which are accompanied or closely followed by satisfaction to the animal will, other things being equal, be more firmly connected with situation, so that, when it recurs, they will be more likely to recur"

Early attempts at modeling

- By associative rules
- Classical conditioning

June 12 5

Properties of classical conditioning

(Pavlov 1927)

- Acquisition.
- Partial Reinforcement (probabilistic).
- Generalization.
- Interstimulus Interval (ISI) effects.
- Intertrial Interval (ITI) effects.

So far...

 A simple association (coincidence, Hebbian) model can explain the phenomenon.

- Acquisition.
- Partial Reinforcement (probabilistic).
- Generalization.
- Interstimulus
 Interval (ISI) effects.
- Intertrial Interval (ITI) effects.

Classical conditioning

The Elements:

US: Unconditioned stimulus

UR: Unconditioned response

NS: Neutral stimulus

CS: Conditioned stimulus

CS1: Conditioned stimulus 1

CS2: Conditioned stimulus 2

CR: Conditioned response

Properties of classical conditioning

(Cnt'd)

- Conditioned Inhibition
- latent inhibition
- Relative validity (Wagner 1968).
- Blocking (Kamin 1968)
- •

CS must RELIABLY predict US

Which simple association can't explain

Learning occurs not because two events co-occur, but because that co-occurrence is otherwise UNPREDICTED

Rescorla-Wagner rule (1972)

Learning to predict reward R given stimulus U=1

Goal: Form a prediction V of the reward of the

form:

V=ωU

And learn to change ω :

 $\Delta \omega = \epsilon (R-V)U$

Where:

U=CS availability (0,1);

V=reward prediction:

R=reward availability (0,1):

 ω = weight of the connection

between U and V

 ε = learning rate

R-V = prediction error

After learning of consistent pairing: $\omega=R$

Blocking with Rescorla Wagner

Given U1, U2 and R, after U1 has been learnt:

Prediction error: R-V=0
 And no learning occurs for ω2

Critical problems, for control

1. Exploration/exploitation

June 12 13

Solutions, for control

- 1. Variability in response policy
 - Greedy ← → Random (gambling)
 - 2. Based on expected return

June 12 14

Decision behaviour, theory and practice

Monkeys' decisions: probability matching

... whether optimal or not

Actions are related to their consequences

Critical problems in reinforcement learning (and in Rescorla-Wagner)

Learning

2. Temporal credit assignment

June 12 19

TD learning - solution for temporal credit assignment

- 1. Estimate value of current state $(V_t = r_t + \gamma' r_{t+1} + \cdots)$: (discounted) sum of expected rewards
- 2. Measure 'truer' value of current state: reward at present state + estimated value of next state $(r_t + \gamma V_{t+1})$
- 3. TD error $\delta_t = r_t + \gamma V_{t+1} V_t$
- 4. Use TD error to improve 1 $(V_t^{k+1}=V_t^k+\eta \delta_t)$

where: $V_{t=value}$ of the state reached at time t in iteration k

 r_t = reward given at time t; η = learning rate, δ = prediction error

TD error: $\delta_t = r_t + \gamma V_{t+1} - V_t$

TD error:
$$\delta_t = \gamma V_{t+1} - V_t + r_t$$

Basal ganglia - anatomy

► The Basal Ganglia

Intracranial self stimulation

ACTIVATES REWARD CIRCUITS

The midbrain dopamine system

Dopamine and acetylcholine meet in the striatum

A TH B ChAT

Corties

CC

CC

Sep CPu

Age

OTu

Mouse

Monkey

Acetylcholine
Figure 4.9

Pontine nuclei

Tectum

Hippocampus

Cingulate
Cortex

Hippocampus

Neccortex

Ottactory
bulb

Thalamus

Nedullary

Pontine
reticular
reticular
formation
Raphe
nuclei

Basal ganglia

Basal forebrain

Pigure 4.13

Hippocampus
Lateral
habenula

Thalamus and putamen
Globus
pallidus
Nucleus
accumbens

Ventral
tegmentum

Neccortex

Hippocampus
Lateral
olfactory
septum nucleus
accumbens

Armygdala

Ventral

Berlin 2004 26

Facts to remember (1)

- Basal ganglia receive cortical input
- Basal ganglia project to frontal cortex
- Dopamine and acetylcholine localization

Berlin 2004 27

The midbrain dopamine system

Probabilistic instrumental conditioning task

$$\delta_{t} = \gamma V_{t+1} - V_{t} + r_{t}$$

Morris et al., Neuron 43(1): 133-143, 2004

DA response

Berlin 2004 30

Dopamine population response-

June 12 Harra University 31

Dopamine population responsereward

June 12 Haita University 32

Dopamine population response – reward omission

Instrumental conditioning - results

- Responses to visual cue are correlated with future reward probability
- Responses to reward are inversely correlated with reward probability
- Responses to reward omission are indifferent to reward probability
- Dopamine neurons provide an accurate TD signal (but only in the positive domain)

... and it can cause long term plasticity of cortico-striatal synapses

Reynolds et al, A cellular mechanism of reward-related learning Nature 413, 67 - 70 (2001)

... and it can cause long term plasticity of cortico-striatal synapses

Shen et al., Science 321:848-851 2008

Facts to remember 2

- DA neurons provide a TD error signal
- To the cortico (state) striatal (action) synapses
- And DA modulates synaptic plasticity

Control - Adding action

The agent has to:

- Learn to predict reinforcement
- Know the state-action-state transitions policy

state value

behavioural

Solution 1: actor/critic networks

How can the dopamine signal contribute to decision behaviour?

 Long term policy-shaping effect

through synaptic plasticity

• Immediate effect on action

Monkeys' decisions: probability matching

The two armed bandit task

Monkeys' decisions: probability matching

Monkeys' decisions: shaping by dopamine

June 12

Dopamine neurons during decision

Coding 2011 46

Are DA neurons aware of future choice

ICNC 2005 47

The learning is of state-action values

