
ON NEURAL CORRELATES OF 
REINFORCEMENT  LEARNING 

the role of dopamine in planning and action  

Genela Morris 
Dept. of Neurobiology 
Haifa University 
gmorris@sci.haifa.ac.il 



Suggested reading 

• Dayan P and Abbott LF. Theoretical Neuroscience: 
Computational and Mathematical Modeling of Neural 
Systems. MIT Press, Cambridge MA (2001): Ch. 9 

• Barto AG & Sutton RS. Reinforcement Learning: An 
introduction. MIT Press, Cambridge MA (1988) : Ch. 3, Ch. 6 + 
some of Ch. 2 

• Schultz W, Dayan P, Montague PR (1997), A neural substrate 
of prediction and reward, Science 275: 1593-1599 

• Figures from research papers are referenced throughout the 
presentation 
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Reinforcement learning  
 the basics 

 Supervised learning –  

 all knowing teacher, detailed feedback 

 Reinforcement learning –  

 scalar (correct/incorrect) feedback 

 Unsupervised learning –  

 self organization 

 



June 12 4 

Reinforcement learning: The law of 
effect 

 “The Law of Effect is that: Of 
several responses made to the 
same situation, those which are 
accompanied or closely followed 
by satisfaction to the animal will, 
other things being equal, be more 
firmly connected with the 
situation, so that, when it recurs, 
they will be more likely to recur” 

 
Edward Lee Thorndike (1911) 



Early attempts at modeling 

• By associative rules 

• Classical conditioning 
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http://www.amazon.com/gp/product/images/0486430936/ref=dp_image_0?ie=UTF8&n=283155&s=books


Properties of classical conditioning  

(Pavlov 1927) 

• Acquisition.  

• Partial Reinforcement (probabilistic). 

• Generalization.  

• Interstimulus Interval (ISI) effects.  

• Intertrial Interval (ITI) effects.  

 



So far…  

• A simple association (coincidence, Hebbian) 
model can explain the phenomenon. 

 

 

 

 

 
– But… 

CS 

US 

• Acquisition.  

• Partial Reinforcement 
(probabilistic). 

• Generalization.  

• Interstimulus 
Interval (ISI) effects.  

• Intertrial Interval 
(ITI) effects.  

 

UR CR 



Classical  conditioning 

The Elements: 

US: Unconditioned stimulus  

UR: Unconditioned response  

NS: Neutral stimulus  

CS: Conditioned stimulus  

CS1: Conditioned stimulus 1  

CS2: Conditioned stimulus 2  

CR: Conditioned response  

http://www.amazon.com/gp/product/images/0486430936/ref=dp_image_0?ie=UTF8&n=283155&s=books


Properties of classical conditioning  

(Cnt’d) 

 

• Conditioned  Inhibition 

• latent inhibition 

• Relative validity (Wagner 1968).  

• Blocking (Kamin 1968) 

• … 

CS must RELIABLY predict US 



Which simple association can’t explain 

Learning occurs not because two 

events co-occur, but because that 

co-occurrence is otherwise 

UNPREDICTED 



Rescorla-Wagner rule (1972) 

Learning to predict reward R given stimulus U=1 

Goal: Form a prediction V of the reward of the 
form: 

V=ωU 

And learn to change ω : 

Δ ω =ε(R-V)U 

After learning of consistent pairing: ω=R 

Where:  

U=CS availability (0,1); 

V=reward prediction: 

R=reward availability (0,1) : 

ω = weight of the connection 

between U and V 

ε = learning rate 

R-V = prediction error 



Blocking with Rescorla Wagner 

• Given U1, U2 and R, after U1 has been learnt: 

• ω1=R 

• V= ω1U1+ ω2U2 

 

 

• Prediction error: R-V=0 

 And no learning occurs for ω2 

R 0 
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Critical problems, for control 

 

1. Exploration/exploitation 

 

 

http://www.jneurosci.org/content/vol27/issue9/cover.shtml
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Solutions, for control 
 

1. Variability in response policy 

1. Greedy   Random 
(gambling) 

2. Based on expected return 

 

 

http://www.jneurosci.org/content/vol27/issue9/cover.shtml
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Decision behaviour, theory and 
practice 

maximizing 

probability- 

matching 

monkeys? 

Rright/(Rright+Rleft) 
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Monkeys’ decisions: probability matching 



… whether optimal or not 

• Actions are related to their consequences 
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Critical problems in 
reinforcement learning (and in 

Rescorla-Wagner) 

2. Temporal credit assignment 

 

 

 

 

state 1 

state 2 state N R 
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TD learning  - solution for temporal 
credit assignment 

1. Estimate value of current state (Vt=rt+ γ’rt+1
+…) : 

(discounted) sum of expected rewards 

2. Measure ‘truer’ value of current state: 
reward at present state + estimated value of 
next state (rt+ γVt+1) 

3. TD error  

4. Use TD error to improve 1 (Vt
k+1=Vt

k+η δt) 

where:Vt = value of the state reached at time t in iteration k 

rt = reward given at time t; η = learning rate, δ = prediction error 

tttt VVr  1
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TD error:  tttt VVr  1

time 
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TD error:  tttt rVV  1

time 
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Basal ganglia - anatomy 



11-Jun-12 medical neurosciences 

Intracranial self stimulation 

Activates reward circuits 



11-Jun-12 medical neurosciences 

The midbrain dopamine system 

DA 

STR 

Ctx 

D1/5 
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Dopamine and acetylcholine meet in the 

striatum 

Mouse Monkey 
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Facts to remember (1) 

• Basal ganglia receive cortical input 

• Basal ganglia project to frontal cortex 

• Dopamine and acetylcholine localization 
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The midbrain dopamine system 

Schultz et al,  

J. Neurosci 13: 

900-913 ,1993 
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Probabilistic instrumental 
conditioning task 

tttt rVV  1

Morris et al., Neuron 43(1): 133-143, 2004 
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DA response 
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Dopamine population response- 
cue 

n=114 
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Dopamine population response-
reward 
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Dopamine population response – 
reward omission 
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Instrumental conditioning - results 

• Responses to visual cue are correlated with 
future reward probability 

• Responses to reward are inversely 
correlated with reward probability 

• Responses to reward omission are 
indifferent to reward probability 

Dopamine neurons provide an accurate TD 
signal (but only in the positive domain) 
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 … and it can cause long term 
plasticity of cortico-striatal synapses 

Reynolds et al,  A cellular mechanism of reward-related learning Nature 413, 

67 - 70 (2001) 

DA 

STR 

Ctx 

D1/5 



 … and it can cause long term 
plasticity of cortico-striatal synapses 

Shen et al., Science 321:848-851  2008 



Facts to remember 2 

• DA neurons provide a TD error signal 

• To the cortico (state) striatal (action) synapses 

• And DA modulates synaptic plasticity 
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State 1 State 2 State    

Action 1 

Agent Environment 

Action   

+Reinforcement 

Control - Adding action 

The agent has to: 

– Learn to predict reinforcement   state value 

– Know the state-action-state transitions behavioural 
policy 
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Solution 1: actor/critic networks 

Environment 

Action   Actor 

Critic 
State    

Reward 

TD  
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How can the dopamine signal 
contribute to decision behaviour? 

• Long term policy-shaping 
effect  

 through synaptic plasticity 

 

 

• Immediate effect on action
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Monkeys’ decisions: probability matching 
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The two armed bandit task 

Morris et al., Nature Neurosci  9: 1057-1063, 2006 
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Monkeys’ decisions: probability matching 
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Lost in translation? 

reward behaviour 

dopamine 

response 

plasticity in  

action circuits 
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Monkeys’ decisions: shaping by dopamine 
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Dopamine neurons during decision 

stimulus action 

decision 

DA DA 
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Are DA neurons aware of future choice?
Hi (explore) 
Lo (exploit) 
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The learning is of state-action values 


