Introduction to Neuroscience: Behavioral Neuroscience

* Introduction to Neuroethology
* Electrolocation in weakly-electric fish

Nachum Ulanovsky

Department of Neurobiology, Weizmann Institute of Science

2009-2010, 1st semester
Outline of today’s lecture

- A primer on neurons and their activity
- Some principles of neuroethology
- Example system 1: Electrolocation in weakly-electric fish
Outline of today’s lecture

- A primer on neurons and their activity
- Some principles of neuroethology
- Example system 1: Electrolocation in weakly-electric fish

These topics will be expanded in the courses “Intro to Neuroscience: From Neuron to Synapse” (next semester) and “Intro to Neuroscience: Sensory, Motor and Memory Systems of the Brain” (next year)
Some basic terms:

• Cell body (soma)
• Dendrite
• Dendritic tree
• Axon
• Axon hillock
• Nodes of Ranvier
• Action potential (spike)
• Synapse
Heterogeneity of neuronal morphology is likely related to the different functions of different neurons.

Some basic terms:
- Cell body (soma)
- Dendrite
- Dendritic tree
- Axon
- Axon hillock
- Nodes of Ranvier
- Action potential (spike)
- Synapse
Neurons communicate with action potentials (spikes) (with some exceptions in invertebrate brains)

Some basic terms:
- Action potential (spike)
- Depolarization
- Hyperpolarization
- Intracellular recordings vs. Extracellular recordings

First published action potential (Hodgkin & Huxley 1939)

500 Hz sine wave (time marker)

Henze et al. (2000)
Sensory neurons respond to stimuli with changes in firing rate.

Some basic terms:
- Trial (of an experiment)
- Raster display of spikes
- Peri-stimulus time histogram (PSTH)
- Receptive field
- Tuning curve
- Best stimulus

Richmond et al. (1990)
Responses of a V1 neuron to complex patterns
Neurons may also use other neural codes

Temporal Coding: Example of one V1 neuron that responds with different temporal patterns to two stimuli

![Temporal Coding Diagram](Image)

Richmond et al. (1990)

Some basic terms:

- Cross-correlation
- Joint peri-stimulus time histogram (J PSTH)
- Neural codes:
 - Rate code
 - Temporal code
 - Synchrony code
 - Labeled-line code
 - Other codes

These topics will be expanded in the courses “Intro to Neuroscience: Sensory, motor and memory systems of the brain” (next year) and “Computational Neuroscience”
Neurons may also use other neural codes

Some basic terms:
- Cross-correlation
- Joint peri-stimulus time histogram (J PSTH)
- Neural codes:
 - Rate code
 - Temporal code
 - Synchrony code
 - Labeled-line code
 - Other codes

These topics will be expanded in the courses “Intro to Neuroscience: Sensory, motor and memory systems of the brain” (next year) and “Computational Neuroscience”

Vaadia et al. (1995)
Anatomy of a vertebrate brain

Some basic terms:
- Nucleus
- Gray matter / white matter
- Cortex (only in mammals)
- Sulcus, Gyrus
- Cerebellum
- Directions in the brain:
 - Dorsal/Ventral
 - Lateral/Medial
 - Anterior/Posterior
 - Rostral/Caudal

These topics will be expanded in the courses “Neuroanatomy” (this year)
Anatomy of a vertebrate brain

Some basic terms:
- Nucleus
- Gray matter / white matter
- Cortex (only in mammals)
- Sulcus, Gyrus
- Cerebellum
- Directions in the brain:
 - Dorsal/Ventral
 - Lateral/Medial
 - Anterior/Posterior
 - Rostral/Caudal

These topics will be expanded in the courses “Neuroanatomy” (this year)
Outline of today’s lecture

- A primer on neurons and their activity
- Some principles of neuroethology
- Example system 1: Electrolocation in weakly-electric fish
Principles of Neuroethology

Neuroethology seeks to understand the mechanisms by which the central nervous system controls the natural behavior of animals.

- **Focus on Natural behaviors:** Choosing to study a well-defined and reproducible yet natural behavior (either Innate or Learned behavior)

- **Need to study thoroughly the animal’s behavior, including in the field:** Neuroethology starts with a good understanding of Ethology.

- **If you study the animals in the lab, you need to keep them in conditions as natural as possible,** to avoid the occurrence of unnatural behaviors.

- **Krogh’s principle**
“For such a large number of problems there will be some animal of choice or a few such animals on which it can be most conveniently studied. Many years ago when my teacher, Christian Bohr, was interested in the respiratory mechanism of the lung and devised the method of studying the exchange through each lung separately, he found that a certain kind of tortoise possessed a trachea dividing into the main bronchi high up in the neck, and we used to say as a laboratory joke that this animal had been created expressly for the purposes of respiration physiology. I have no doubt that there is quite a number of animals which are similarly "created" for special physiological purposes, but I am afraid that most of them are unknown to the men for whom they were "created," and we must apply to the zoologists to find them and lay our hands on them." (Krogh, 1929)
Krogh’s principle and Neuroscience research

Studying the giant axon of the squid in order to understand mechanisms of action-potential generation

Q: Why was this species chosen?

A: Because of the huge size of its axon (~1 mm diameter), which allowed using macro-wires for recording electrical potentials - and doing voltage clamp.
Studying the frog neuromuscular junction in order to understand the physiology of synaptic transmission

Q: Why was this species chosen?
A: Because of the **size** of this synapse (end-plate) and the **simplicity** of the reflex circuit involved.
Krogh’s principle and Neuroscience research

Studying the *Limulus* (horseshoe crab) retina in order to understand visual processing; discovery of the phenomenon of lateral inhibition

Q: Why was this species chosen?

A: Because horseshoe crabs have long optic nerves that can be physically **split** to record from individual nerve fibers; and the retina circuitry is **simple**: the compound eye has one photoreceptor under each ommatidium, which facilitates the study of lateral inhibition

Haldan Hartline
Nobel prize 1967
Krogh’s principle and Neuroscience research

Studying the neurobiology of learning and memory in *Aplysia*

Q: Why was this species chosen?

A: Because of the **size** of its **identified** neurons; and not least importantly, because of the animal’s robust **behavior** (e.g. sensitization, or classical conditioning of the gill withdrawal reflex)
Some commonly used animal models in Neuroscience:
Past and Present (Not showing less common species, e.g. Elephant)
Krogh’s principle vs. “standard animal models”

• A corollary of Krogh’s Principle - as viewed by Neuroethologists:
 You should choose the animal species that best fits your research question (fits either in terms of the animal’s behavior or for technical reasons) – i.e., choose well your animal model – rather than studying all the possible questions using just a few “standard animal model species” (rat, mouse, monkey).

• Advantages of “Standard animal models”: So much is known about their brains… Therefore, many people prefer this knowledge-base over Krogh’s principle.
Outline of today’s lecture

• A primer on neurons and their activity
• Some principles of neuroethology
• **Example system 1: Electrolocation in weakly-electric fish**

 [Electrolocation material is based primarily on the book: Behavioral Neurobiology: An Integrative Approach, Zupanc (2004)]
Fish and electric fields (*Platypus also added here*)

- **Strongly electric fish**
 (e.g. Electric eel: 500 Volts, 1-Ampere)

- **Weakly electric fish**
 (a few mV to 1 Volt)
 - **Sharks, Rays, Platypus…**

Weakly electric fish generate and detect electric fields, and use this ability to localize objects in the environment: **Electrolocation**.
Wave-type and Pulse-type weakly electric fish

Moller 1995
Why is it a good model system?

- Animal model for sensory-motor integration: Weakly electric fish are good animal model because sensory-motor integration is a closed-loop system (negative feedback), and studying it requires “opening the loop” – which is possible in weakly electric fish (see next slides).

- The Electric Organ Discharge (EOD) in Eigenmannia is the most stable biological oscillator in nature: Hence it’s a good model system for studying questions of neural coding: temporal coding, rate coding, spike time variability, information transmission…
Electric Organ Discharge

Eigenmannia virescens

EL cells – modified muscle cells *(in strongly electric fish they are stacked in series, so voltages can sum up to hundreds of volts)*
Electroreceptors

TU – Tuberous receptors (sensitive to high frequencies - most important for electrolocation). Each Tuberous receptor sends 1 axon to the brain.

AM – Ampullary receptors.
Electrolocation: putting production and reception together

Diagram showing the flow of electric current from an electric organ through electroreceptors, around a nonconducting object, and back to the electric organ.
Shown is the EOD dipole, as well as a false-color map on the skin indicating the change in firing-rate in sensory neurons (tuberosous electoreceptors) caused by the presence of a small target (red dot).
Electrolocation: putting production and reception together

Electrolocation as Imaging:
The entire body surface of the fish is used for imaging the presence of conducting objects ("labeled-line code").

Show Movie of simulation of weakly electric fish prey capture
Electrolocation: putting production and reception together

A. Transdermal Potential Change

B. Afferent Firing Rate Change

- Target

$t=-167\text{ms}$

$t=0\text{ms}$ Detection

$t=167\text{ms}$

$t=333\text{ms}$

Time

μV

Spikes/s
Electrosensory reafferent signals from electroreceptor afferents are cancelled by a "negative image" provided by feedback input – this is needed to eliminate the large changes in received EOD due to changes in the animal’s posture during behavior.
Two types of electroreceptors encode time and amplitude.

- **Time (phase) coding**
- **Probability (amplitude) coding**

Stimulus

<table>
<thead>
<tr>
<th>Firing of T-unit</th>
<th>Firing of P-unit</th>
</tr>
</thead>
</table>

Behaviorally, weakly electric fish can detect **amplitude** changes < 0.1\% in the input signal, and **temporal** changes < 1 μs.
Jamming Avoidance Response (JAR) in wave-type fish

(a) Eigenmannia
(b) Gymnarchus
(c) Jamming avoidance response

\[\Delta f = f_2 - f_1 \]

- \(f_1 \): fish's own EOD frequency
- \(f_2 \): neighbor's EOD frequency

EOD frequency

\[\Delta f \]

2 Hz

1 min
The concept of “opening the loop” in biological feedback systems

Example: Hodgkin & Huxley’s elucidation of the mechanism of action potential generation

Voltage \[\rightarrow \] Conductance

Experimenter’s control: Voltage clamp
The concept of “opening the loop” in the Jamming Avoidance Response

Nucleus electrosensorius (nE) → Pacemaker nucleus

Torus semicircularis

ELL (brainstem: Electrosensory Lateral Line lobe)

Electroreceptors

P-afferents and T-afferents

Motoneurons

Electric organ

(modified muscle cells)

EOD (Electric Organ Discharge)

Objects in the environment:
Distortions in electric field = Net Electric Field

EOD (Electric Organ Discharge)
The concept of “opening the loop” in the Jamming Avoidance Response

Nucleus electrosensorius (nE) → Pacemaker nucleus

↑ Torus semicircularis

ELL (brainstem: Electrosensory Lateral Line lobe)

Electroreceptors
P-afferents and T-afferents

Motoneurons

Electric organ (modified muscle cells)

EOD (Electric Organ Discharge)

Objects in the environment:
Distortions in electric field = Net Electric Field

Experimenters control:
Artificially-produced Electric Fields

Measure responses not from the EOD but directly from the pacemaker nucleus

X (curare)

X (remove any objects)
Eigenmannia do NOT compute the sign of Δf by comparing the sensory stimulus to the motor production.

JAR is still present after blocking the EOD with curare and replacing it with artificial “self-produced” signal \Rightarrow hence, JAR is purely sensory-based.

This is “opening the loop”, because curare does NOT affect the pacemaker nucleus in the fish’s medulla, which continues to oscillate normally and whose firing exhibits JAR.
Natural geometry (two separate sources) is important for JAR

- If the two signals, S_1 and S_2, are spatially separate sources - JAR is normal.

- If the two signals are added $S_1 + S_2$ but this sum is presented from one location - no JAR occurs.
Natural geometry (two separate sources) is important for JAR

Hence: Variation of relative amplitudes S1/S2 across the body surface is important for JAR
How does the fish know the sign of Δf? That is, to shift \uparrow or \downarrow?
How does the fish know the sign of Δf? That is, to shift ↑ or ↓?
How does the fish know the sign of Δf? That is, to shift \uparrow or \downarrow?

(a) Currents at point A
- S_{Fish}
- S_{Neighbor}
- $S_{\text{Fish}} + S_{\text{Neighbor}}$

(b) Currents at point B
- S_{Fish}
- S_{Neighbor}
- $S_{\text{Fish}} + S_{\text{Neighbor}}$

(c) Amplitude at A ($|s_A|$) and B ($|s_B|$)
- Lead and lag
- Phase at A $-\Delta$ Phase at B ($H_A - H_B$)
- Phase at B $-\Delta$ Phase at A ($H_B - H_A$)
Neural circuits mediating JAR

Lamina 6: Differential phase computation

Laminas 5,7: Amplitude modulation computations

Lamina 8c: receives vertically signals from laminas 5,6,7: first station where neurons are coding for Δf

ELL: electrosensory lateral line lobe (contains three somatotopic electrosensory maps)

Electrical synapse
nE: *nucleus electroSensorius*: The first station where neurons are found that code for Δf irrespective of the geometric spatial arrangement of the jamming signal (i.e. no ambiguity)
Neural circuits mediating JAR – the full sensorimotor loop
The two founding fathers of electrolocation research

Theodore (Ted) Bullock:
- Discoverer of two (!) new sensory systems: Electrolocation in weakly-electric fish, and thermolocation by the snake’s pit organs
- Founder of first Neuroscience department in the world (UCSD)
- Founder and 1st president of International Society for Neuroethology
- 3rd president of the Society for Neuroscience (SfN)

Walter Heiligenberg
- Pioneered the study of the brain mechanisms of the jamming avoidance response (JAR)
- Many electrolocation researchers worldwide are his ex-students
- One of the first Computational Neuroscientists, who combined experiments and modeling (“Neural nets in electric fish”, 1991)