Why study an exotic animal?

Yoram Gutfreund
The Technion, Haifa, Israel
Which model system?

While humans are good for generating hypotheses, animals are good for testing them.

Which animals?

Animals that lend themselves to combined behavioral and neurophysiological work.

Specialists or Generalists?
• Sound localization
• Sensory maps plasticity and development
• Spatial attention
• Multisensory integration
Barn owls as model system for sound localization

- Facial ruff serves as a sound amplifier
Barn owls as model system for sound localization

- Facial ruff serves as a sound amplifier
- Asymmetric ears allow for an increased spatial resolution in the vertical plane
Barn owls as model system for sound localization

- Facial ruff serves as a sound amplifier
- Asymmetric ears allow for an increased spatial resolution in the vertical plane
- Comb-like structures at the leading edge of the wing reduce noise during flight
Barn owls as model system for sound localization

- Facial ruff serves as a sound amplifier
- Asymmetric ears allow for an increased spatial resolution in the vertical plane
- Comb-like structures at the leading edge of the wing reduce noise during flight
- Brain structures involved in the analysis of sound are enlarged
Performing a psychoacoustic experiment with an owl.
Sound-localization with free-field stimuli
• The auditory localization cues:

• **ITD - horizontal**

• **ILD - vertical**

location producing ITD = 0 µsec

location producing ITD = 100 µsec

artist: Susan Mauersberg
Precision of sound localization in barn owls may be as good as 3 deg which corresponds to 6-10 µs.
These signals are the “language” of neural processing.
Durations of events

- Typical duration of action potential: 1ms
- Typical duration of post-synaptic potentials: 5-10 ms
- Precision of sound localization by interaural time difference: 6-10 μs

What has to be explained is

Factor of 500-1000
The principle of phase locking as a means to conserve time

Sinusoidal signal

Presumed resulting postsynaptic potential

Registered signal in computer

Note that in this example the response always occurs at a phase of 180 degrees.
Phase locking in the barn owl

Phase locking can be measured by plotting spike arrival times with respect to the period of the stimulus tone.

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>Period (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>111</td>
</tr>
</tbody>
</table>

Precision of phase locking is 35 µs at 5 kHz (Koepepl (1997)).
Visual and auditory maps in the OT
Computational map

Transducing sound to action-potentials

Computing auditory localization cues

Integrating cues from specific locations

Associating with external space

Sound
Frequency
Intensity
Time
Side of ear

Frequency
Binaural localization cues

Space tuned
Computational maps
The matching problem

location producing
ITD = 0 µsec

location producing
ITD = 100 µsec
Computational maps
The matching problem

location producing
ITD = 0 µsec

location producing
ITD = 100 µsec
Normal

Immediate Effect of Prisms

Prism-adapted

Effect of prism experience on auditory tuning

Knudsen and Brainard, Science (1991)
Effect of prism experience on auditory tuning

Normal

Immediate effect of prisms

After 8 weeks of prism experience

+20
0 el
-20
L20
R20
0 az

V

V

V
Quantification of learning

1. Behavioral test

2. Physiological test
Decline in learning with age

Increased capacity for learning in adults that have had appropriate experience as juveniles

Effects of juvenile experience on adult learning

Incremental learning
Incremental learning

Rich and lively experiences increase learning capacity in adults

Bergan et al., Journal of Neuroscience (2005)
Summary

- Decline in learning with age
- Increased capacity for learning in adults that have had appropriate experience as juveniles
- Incremental training improves learning
- Rich and lively experiences increase learning capacity in adults
Where is the site of plasticity?

Forebrain
- Sensory/Association Areas
 - Ovoidalis (MGN)
 - Rotundus (Pulvinar)
 - Inferior Colliculus central n.
 - Inferior Colliculus external n.
 - VLVp (LSO/DNLL)
 - LAM (MSO)

Midbrain
- Motor Nuclei for gaze control

Thalamus
- Archistriatum (FEF)
- Optic Tectum (SC)
- Forebrain
- Midbrain
- Thalamus
Horizontal section through the tectal lobe

Visual input from Retina and Forebrain

ICC

OT

ICX

r

c

m

l
Site of plasticity in the ICX

Debello et al., J. Neurosci. 2001
After prism learning

Visual input from Retina and Forebrain
The instructive signal

- Operates in the ICX
- Visually based
Where is the instructive signal coming from?
BDA injection site in ICX
Topography of the OT-ICX projection

[Diagram and image showing topography of the OT-ICX projection with labels BDA and FG.]
Restricted lesion of the optic tectum
How can a visually based instructive signal act in an auditory structure?
Horizontal section through the tectal lobe

Visual input from Retina and Forebrain

ICC, OT, ICX, 0°, 20°, 40°, r, c, m, l
Experimental techniques

bicuculline

recording

ICC

OT

ICX

0

50 50

100 100 µsec

r

m l

500 µm

iontophoresis barrels

recording barrel
Light responses in the ICX
Visual Receptive Fields in the ICX
Properties of visual responses in ICX

- Arrive from the OT
- Display spatially restricted visual receptive fields
- Form a map of space
- Align with auditory spatial representation
Bimodal Stimulus

light

right ear

left ear
Visual and auditory interactions in the ICX
Bimodal stimulus

Normal

Visual input

ICC

ICX

OT
Bimodal stimulus

Normal

With prisms

Visual input

ICC
ICX
OT

 ICC
ICX
OT
Bimodal stimulus

Normal

With prisms

Visual input

ICC

ICX

OT

ICC

ICX

OT
Summary

An inhibitory gate controls the flow of visual information into the auditory system.
Summary

• An inhibitory gate controls the flow of visual information into the auditory system

• The visual signals are appropriate to serve as the instructive signal for auditory plasticity
• Eric Knudsen
 Daniel Feldman
 Michael Brainard
 Will Debello
 Peter Hyde
 Brie Linkenhoker
 Joe Bergan

Stanford University

Hermann Wagner - AACHEN University