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Touching

« Body-world interface
 Passive vs active touch
 Perceptual loops



Body-world interface

Underneath the skin
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Figure 8.3 The skin harbors a variety of morphologically distinct mechanoreceptors. This diagram
represents the smooth, hairless (also called glabrous) skin of the fingertip. The major characteristics of the

various receptor types are summarized in Table 8.1. (After Darian-Smith, 1984.)
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Proprioceptive receptor types

Name: Muscle spindle Golgi tendon Joint receptors
receptors organs
Sensitive to:  muscle length muscle tension Flexion, extension
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Body-world interface

Underneath

the skin

TAELE 8.1
The Major Classes of Somatic Sensory Receptors
Associated Avxonal
Receptor Anatomical axons” {(and conduction Rate of Threshold
type characteristics diameters) velocities Location Function adaptation  of activation
Free nerve Minimalby C, Ad 2-20m/s All skin Pain, Slow High
endings speda]jiid 5_ 2 ms tempemtuu;:,
nerve endings : crude to
Meissner’s Encapsulated; AR 30 — 70 m/ Principally Touch, Rapid Lowr
corpuscles between dermal 6-12 fm = s glabrous pressure
papillas skin idymamic)
Pacinian Encapsulated; AR Subcutaneous  Deep pressure, Rapid Lowr
corpuscles cnicrlike 6-12 [m tizsue, wibration
Covering mtemsﬁec-us idymamic)
Mechano-recepter
Merkel's Encapsulated; AP (ex aﬁe re ﬂlt@?' hair  Touch, Slow Lowr
disks associated pressure
with peptide- (static)
releasing cells
Ruffini’s Encapsulated; AR All skin Stretching Slow Lowr
corpuscles oriented along 612 m of skin
stretch lines
Muscle Highly la and II Muscles Muscle Both slow Lowr
spindles specialized length and rapid
isee Figure B.5 .
| and Chapter 15 Proprio-(re)ceptors
Colgi tendon Highly Ik Tendons Muscle Slow Lo
organs specialized (re_affe re ntS) tension
isee Chapter 15)
Joint Minimally — Joints Joint position  Rapid Lo
receptors specialized
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Evolutionary specialization
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Signal transduction



Transduction

The receptor potential is produced by a mechanically sensitive
channel that opens when the membrane is deformed

The channel is permeable to positive ions, primarily Na*, K* and
Ca2+
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Transduction

A Muscle spindle

M)

0l

Intrafusal
muscle
fibers

Capsule

Sensory
endings

Afferent
axons

Intracellular

Stretch-sensitive channels
in sensory nerves

Cytoskeletal strands

B Receptor potential in nerve

- 15pF

E

-

S

& qof

o

=5

3E

o

- 05F

(e}

[-%

L |

5. 200 - -

Ry ———————

73 ot
L L o A L
0 5 10 15 20

Time (ms)

Figure 21-2 Mechanoreceptors are depolarized by stretch of the cell membrane and the depolarization is proportional to the stimulus
amplitude.

A. The spindle organ in skeletal muscle mediates limb proprioception. These receptors signal muscle length and the speed at which the



Receptive Fields (RFs):

Spatial and temporal



Receptive Fields (RFs): Spatial and temporal
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Receptive Fields (RFs): Spatial and temporal
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Receptive Fields (RFs): Spatial and temporal
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Cutaneous Mechanoreceptor Channels
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Receptor density
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Figure 22-4 The distribution of receptor types in the human hand varies. The number of sensory nerve fibers innervating an area is indicated by the stippling
density, with the highest density of receptors shown by the heaviest stippling. (RA = 5 rapidly adapting, SA = 5 slowly adapting.) Meissner's corpuscles (RA) and
Merkel disk receptors (SA I) are the most numerous receptors; they are distributed preferentially on the distal half of the fingertip. Pacinian corpuscles (PC) and
Ruffini endings (SA II) are much less commeon; they are distributed more uniformly on the hand, showing little differentiation of the distal and proximal regions. The
fingertips are the most densely innervated region of skin in the human body, receiving approximately{ 300 mechanoreceptive nerve fibers per square centimeter] The
number of mechanoreceptive fibers is reduced to n the proximal phalanges, and to|50/cm2|in the palm. (Adapted from Vallbo and Johansson 1878.)




Neurometric - psychometric matching

Spatial resolution
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Signal conduction



Sensory signal conduction

Pseudo-unipolar neurons




Sensory signal conduction
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Sensory signal conduction
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Sensory signal conduction
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Primary somatic
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Figure 8.7 Diagram of the somatic sensory portions of the thalamus and their cor-
tical targets in the postcentral gyrus. The ventral posterior nuclear complex com-
prises the VPM, which relays somatic sensory information carried by the trigeminal
system from the face, and the VPL, which relays somatic sensory information from
the rest of the body. Inset above shows organization of the primary somatosensory
cortex in the postcentral gyrus, shown here in a section cutting across the gyrus
from anterior to posterior. (After Brodal, 1992, and Jones et al., 1982.)



The Homunculi

A Sensory homunculus B Motor homunculus
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The Homunculi

Relative size reflects innervation density

phylogenetically

“albbit

Figure 20-5 Different species rely on different parts of the body for adaptive somatosensory information. These drawings show the relative
importance of body regions in the somatic sensibilities of four species, based on studies of evoked potentials in the thalamus and cortex,




The Homunculi

Relative size reflects innervation density

ontogenetically



Motor signal conduction

Descending lateral corticospinal pathway
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Motor signal conduction
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The Homunculi

| organization
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Figure 23-9 The representation o hllkm in the somatosensory cortex of the rat. (Adapted from Bennett-Clarke et al, 1997),




Sensory signal conduction
The vibrissal system
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Sensory signal conduction
The vibrissal system
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Common mechanisms of sensory processing



Rich muscular system
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Receptor types whisker
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Receptor convergence / divergence

Human eye: 5M cones (+ 120M rods) --> 1M fibers
Human skin: 2,500 receptors/cm? --> 300 fibers / cm?
Rat whisker: 2,000 receptors --> 300 fibers

~ 10 -> 1 convergence
Human ear: 3,000 hair cells --> 30,000 fibers

~1->10 divergence
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Spatial processing (by Lateral inhibition)
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Efficient coding

(by only coding changes)

Changes in time:
* Intrinsic in individual neurons
« Starting at the receptor level

Changes In space:
« Circuits of neurons
« Starting after lateral inhibition



Temporal filtering (by intrinsic factors)
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Neurometric - psychometric matching

sensitivity
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Figure 22-6B The threshold for detecting vibration corresponds to the tuning threshold of the
mechanoreceptor. The sensitivity threshold for Meissner's corpuscles is lowest for
frequencies of 20-50 Hz. Pacinian corpuscles sense higher frequencies. (Adapted from
Mountcastle et al. 1972.)



Passive and active touch

Passive touch
= Perceptual processing follows sensory events

Active touch
= Perceptual processing surrounds sensory events:

0 The brain probes the world
o Compares sensory data with internal expectations

0 Updates internal expectations

Active touch is done in a loop:

» Change of expectations => probing the world
 probing the world => Change of expectations



Passive and active touch

Passive touch Active touch
= low thresholds = higher thresholds
" pOOr accuracy = high accuracy



Passive and active touch

Passive touch Active touch
= low thresholds = higher thresholds
" pOOr accuracy = high accuracy
U )
Detection Exploration

Object localization
Object identification



Passive and active touch

Passive touch Active touch
= low thresholds = higher thresholds
" pOOr accuracy = high accuracy

Potential underlying mechanism: “Gating”
* Arousal, preparatory, or motor commands “‘gate out”
sensory signals
= Example: Thalamic gating (Sherman & Guillery, JNP. 1996)

Thalamic neurons have 2 modes:

= in drowsiness: hyperpolarized, bursting, low threshold
= in alertness: depolarized, single spikes, high threshold



Passive and active touch

Passive touch Active touch
= low thresholds = higher thresholds
" pOOr accuracy = high accuracy

Underlying mechanisms:

= Additional information

 expectations

 accumulation of sensory data over time
« more coding dimensions

* Increased resolution due to scanning

= close-loop operation



Passive and active touch

Passive touch Active touch
= low thresholds = higher thresholds
" pOOr accuracy = high accuracy

Underlying active mechanisms:

= Additional information

 expectations
 accumulation of sensory data over time
« more coding dimensions

* Increased resolution due to scanning

= close-loop operation



Sensory encoding: What receptors tell the brain

Sensory organs consist of receptor arrays:

somatosensation audition vision

~200 um
Finger pad




Sensory encoding: What receptors tell the brain

Sensory organs consist of receptor arrays:

somatosensation audition vision

R
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~200 pm 10 pm 10 pm
Finger pad cochlea retina

Spatial organization => Spatial coding (“which receptors are activated”)



Spatial coding metaphors

one could think of:

the eye as a camera the skin as a carbon paper

light is
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via photo-receptors



How neurons encode external events in space?



The “labeled-line code”.

a binary code, reporting yes/no about the
occurrence of a given event.

events neurons

A

m m O O

Every neuron has a “label”



Reading out the labeled line code

T m g O W >

reading algorithm: a location X is pressed if and only if neuron x fires

On what condition will this algorithm be valid?

() o %=> @ — Neuron x fires if angbanly if X is pressed
Is this assumption valid?
1. The problem of background activity



2. The “problem” of sensor movements

receptors are sensitive to changes

Thus

If both objects and sensors are passive (stationary),
nothing will be sensed



Active Sensing Is a strategy that induces
changes In sensed signals

In mammals, active sensing Is typically
Implemented by sensor movements:




Drives for sensor movements

1. The world is not flashing

2. sensory sheets are not uniform



Fovea

eye finger whisker
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‘ Fovea => macro movements of the sensory organ

‘ receptor sensitivity => micro movements of the sensory organ




Sensor motion Is required for

 Foveation
 Sensing stationary environment

« Without sensor motion sensation is limited to
moving or flashing objects



How sensor motion constrains sensory coding?



Eve movements during fixation

backward!



Eve movements during fixation




sensory encoding: What receptors tell the brain

Sensory organs consist of receptor arrays:

somatosensation audition vision
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~200 pm 10 pm
Finger pad cochlea retina

Spatial organization => Spatial coding (“which receptors are activated”)

Movements  =>Temporal coding  (“when are receptors activated”)




Body-world interface
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The End



