
9 Instantons in Quantum Mechanics

9.1 General discussion

It has already been briefly mentioned that in quantum mechanics certain aspects of a problem
can be overlooked in a perturbative treatment. One example occurs if we have a harmonic
oscillator with a cubic anharmonic term: V (q) = 1

2
mω2q2 + λq3 (Figure 15).
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Figure 15: V (q) = 1
2
mω2q2 + λq3.

We can calculate corrections to harmonic oscillator wave functions and energies pertur-
batively in λ, to any desired order, blissfully ignorant of a serious pathology in the model.
As can be seen from Figure 15, this model has no ground state: the potential energy is
unbounded as q → −∞, a point completely invisible to perturbation theory.

A second example is the double-well potential, V (q) = λ
4!

(q2 − a2)2 (Figure 16). There
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Figure 16: V (q) = λ
4!

(q2 − a2)2.

are two classical ground states. We can ignore this fact and expand V about one of the
minima; it then takes the form of a harmonic oscillator about that minimum plus anharmonic
terms (both cubic and quartic). We can then compute perturbative corrections to the wave
functions and energies, and never see any evidence of the other minimum. Were we to expand
about the other minimum, we would produce an identical set of perturbative corrections. By
symmetry the ground state energies calculated perturbatively to any order will be the same
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for the expansions about the two minima, so it appears that we have degenerate ground
states. But in fact the ground state is not degenerate: a nonperturbative energy splitting
separates the true ground state (an even function of q) from the first excited state (an odd
function); this splitting is not seen in perturbation theory.

We will examine this second example using PIs, the main goal being to calculate the
energy splitting between the two candidate ground states.

Let us first recall the PI expression for the Euclidean propagator:

KE(q′,
β

2
; q,−β

2
) = 〈q′| e−βH/h̄ |q〉 =

∫

Dq e−SE/h̄,

where

SE =
∫ β/2

−β/2
dτ
(

1

2
mq̇2 + V (q)

)

.

Henceforth, we will set m→ 1. KE is useful because we can write it as

KE =
∑

n

〈q′|n〉〈n |q〉 e−βEn/h̄; (53)

in the limit β → ∞, this term will be dominated by the lowest-energy states. I say “states”
here rather than “state” because we must calculate the two lowest-energy eigenvalues to
get the splitting of the (perturbatively degenerate) lowest-energy states in the double-well
potential.

We will evaluate the PI using an approximation known as the semiclassical approxi-
mation, or alternatively as the method of steepest descent. To illustrate it, consider the
following integral

I =
∫ ∞

−∞
dx e−S(x)/h̄,

where S(x) is a function with several local minima (Figure 17).

1 x 2 x 3x
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Figure 17: Potential with several minima.

Suppose we are interested in this integral as h̄→ 0. Then the integral will be dominated
by the minima of S; we can approximate it by a series of Gaussian integrations, one for each
minimum of S. If xi is such a minimum, then in its vicinity S(x) ≃ S(xi)+ 1

2
(x−xi)

2S ′′(xi);
we can write

I ≃ I1 + I2 + I3 + · · · , (54)
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where

Ii =
∫ ∞

−∞
dx exp−[S(xi) +

1

2
(x− xi)

2S ′′(xi)]/h̄

= e−S(xi)/h̄

√

2πh̄

S ′′(xi)
.

Anharmonicities of S appear as corrections of order h̄ to I. (This can be easily seen, for
example, by considering a specific case such as S(x) = ax2 + bx4.)

We will compute the PI (53) in the semi-classical approximation, where the analog of the
xi in the above example will be classical paths (extremum of the action SE[q]).

Suppose, then, that qc(τ) is the classical solution to the problem

d2

dτ 2
q =

∂V (q)

∂q
, q(−β/2) = q, q(β/2) = q′.

We can write q(τ) = qc(τ) + y(τ); the action is

SE[qc + y] =
∫ β/2

−β/2
dτ
(

1

2
q̇c + ẏ2 + V (qc + y)

)

=
∫ β/2

−β/2
dτ
(

1

2
q̇2
c + V (qc)

)

+ (linear in y)

+
∫ β/2

−β/2
dτ
(

1

2
ẏ2 +

1

2
V ′′(qc)y

2
)

+ · · · . (55)

The term linear in y vanishes for the usual reason, and the higher order terms not written
down are of cubic or higher order in y. Neglecting these (which give order h̄ corrections to
the PI), the propagator becomes

KE =
∫

Dq e−SE/h̄ = e−SE [qc]/h̄
∫

Dy exp−
∫

dτ
(

1

2
ẏ2 +

1

2
V ′′(qc)y

2
)

/h̄.

The functions y(τ) over which we integrate satisfy the boundary conditions y(−β/2) =
y(β/2) = 0. The PI, being Gaussian, can be done exactly; it is not as straightforward as the
harmonic oscillator PI since V ′′(qc) depends on τ . While we have often managed to avoid
evaluating PIs, here we must evaluate it. (Unfortunately, this is rather difficult.)

To this end, we can use a generalization of the Fourier expansion technique mentioned
in Section 2.2.2. We can rewrite the action as

SE =
∫

dτ
(

1

2
ẏ2 +

1

2
V ′′(qc)y

2
)

=
1

2

∫

dτ y

(

− d2

dτ 2
+ V ′′(qc)

)

y. (56)

The Schroedinger-like equation

(

− d2

dτ 2
+ V ′′(qc)

)

y = λy, y(−β/2) = y(β/2) = 0
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has a complete, orthonormal set of solutions; let the solutions and eigenvalues be yk(τ) and
λk, respectively. The orthonormality relation is

∫ β/2

−β/2
dτyk(τ)yl(τ) = δkl.

Then we can substitute y(τ) =
∑

k akyk(τ) in (56), giving

SE =
1

2

∫

dτ
∑

k

akyk

(

− d2

dτ 2
+ V ′′(qc)

)
∑

l

alyl =
1

2

∑

k,l

akalλl

∫

dτykyl =
1

2

∑

k

a2
kλk.

The PI can now be written as an integral over all possible values of the coefficients {ak}.
This gives

KE = J ′
∫
∏

k

dak e
−
∑

k
a2

k
λk/2h̄, (57)

where J ′ is the Jacobian of the transformation from y(τ) to {ak}. (57) is a product of
uncoupled Gaussian integrals; the result is

KE = J ′
∏

k

(

2πh̄

λk

)1/2

= J ′
∏

k

(2πh̄)1/2(
∏

k

λk)
−1/2 = J ′

∏

k

(2πh̄)1/2det−1/2

(

− d2

dτ 2
+ V ′′(qc)

)

,

where we have written the product of eigenvalues as the determinant of the Schroedinger
operator on the space of functions vanishing at ±β/2.

We can write J = J ′∏

k(2πh̄)
1/2, giving

KE = Jdet−1/2

(

− d2

dτ 2
+ V ′′(qc)

)

(1 + o(h̄)),

where the o(h̄) corrections can in principle be computed from the neglected beyond-quadratic
terms in (55). We will not be concerned with these corrections, and henceforth we will drop
the (1 + o(h̄)).

9.2 Single Well in the Semiclassical Approximation

Before looking at the double well, it is worthwhile examining the single well, defined be

V (q) =
1

2
ω2q2 +

λ

4!
q4.

The classical equation is
d2

dτ 2
q = V ′(q).

Note that this is the equation of motion for a particle moving in a potential −V (q). If we
choose the initial and final points q = q′ = 0, then the classical solution is simply qc(τ) = 0;
furthermore, V ′′(qc) = V ′′(0) = ω2, and

KE = Jdet−1/2

(

− d2

dτ 2
+ ω2

)

.
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The evaluation of the determinant is not terribly difficult (the eigenvalues can be easily
found; their product can be found in a table of mathematical identities); the result, for large
β, is

KE =
(
ω

πh̄

)1/2

e−βω/2.

From (53), we can extract the ground state energy since, for large β, KE ∼ exp−E0β/h̄. We
find E0 = h̄ω/2 up to corrections of order λh̄2. We have discovered an incredibly complicated
way of calculating the ground state energy of the harmonic oscillator!

9.3 Instantons in the Double Well Potential

Let us now study a problem of much greater interest: the double well. We will see that
configurations known as “instantons” make a non-perturbative correction to the energies.
We wish to evaluate the PI

KE =
∫ q′,β/2

q,−β/2
Dq e−SE ,

where

SE =
∫

dτ

(

1

2
q̇2 +

λ

4!
(q2 − a2)2

)

,

for β → ∞. As explained above, the PI is dominated by minima of SE, i.e., by classical
solutions. The classical equation corresponds to a particle moving in the potential −V (q)
(Figure 18); the “energy” E = 1

2
q̇2 − V (q) is conserved.

-a

-V(q)

a q

Figure 18: Inverted double-well potential.

Let us examine classical solutions, taking the boundary values q, q′ of the classical solution
corresponding to the maxima of −V , ±a. In the limit β → ∞, these will be solutions of zero
“energy”, since as τ → ±∞ both the kinetic and potential “energy” vanish.

First, if q = q′ = a (an identical argument applies if q = q′ = −a), the obvious classical
solution is q(τ) = a; a quadratic approximation about this constant solution would be
identical to the single-well case discussed above.

But what if q = −a and q′ = a (or vice-versa)? Then the obvious classical solution
corresponds to the particle initially sitting atop the maximum of −V at −a, rolling towards
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q = 0 after a very long (infinite, in the limit β → ∞) time, and ending up at rest at the
other maximum of −V as τ → ∞ (Figure 19).

)τq(

τ

a

-a

Figure 19: Instanton in the double-well potential.

We can get the analytical form of this solution: setting E → 0, we have

1

2
q̇2 = V (q), or

dq

dτ
= ±

√

λ

12
(q2 − a2).

There are a family of solutions interpolating between −a and a:

q(τ) = a tanh
ω

2
(τ − τ0), (58)

where ω =
√

λa2/3 and where τ0 is an integration constant which corresponds to the time
at which the solution crosses q = 0.

This solution is much like a topological soliton in field theory, except that it is localized in
time rather than in space. One could argue that the solution doesn’t appear to be localized:
q goes to different values as τ → ±∞. But these are just different, but physically equivalent,
ground states, so we can say that the instanton is a configuration which interpolates between
two ground states; the system is in a ground state except for a brief time – an “instant”.
For this reason, the solution is known as an instanton.

I called the two solutions q(τ) = a and q(τ) = a tanh ω
2
(τ − τ0) the obvious classical

solutions because there are an infinite number of approximate classical solutions which are
potentially important in the PI. Since the instanton is localized in time, and since the total
time interval β is very large (in particular, much larger than the instanton width), a series
of widely-separated instantons and anti-instantons (configurations interpolating between +a
and −a) is also a solution, up to exponentially small interactions between neighbouring
instantons and anti-instantons. Such a configuration is shown in Figure 20, where the hor-
izontal scale has been determined by the duration of imaginary time β; on this scale the
instanton and anti-instanton appear as step functions.

It is clear than an instanton must be followed by an anti-instanton, and that if the
asymptotic values of the position are +a and +a the classical solution must contain anti-
instanton-instanton pairs whereas if they are −a and +a we need an extra instanton at the
beginning.
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Let us choose first limiting values q(−β/2) = q(+β/2) = +a. Then we are interested in

KE =
∫ a,β/2

a,−β/2
Dq e−SE .

In the spirit of (54), in the steepest-descent approximation KE is equal to the sum of PIs
evaluated about all classical solutions. The classical solutions are: qc(τ) = a; qc =anti-
instanton-instanton≡ AI; qc = AIAI; etc., where the positions of the As and Is are not
determined, and must be integrated over. Schematically, we may write

KE = K0
E +K2

E +K4
E + · · · , (59)

where the superscript denotes the total number of Is or As. Let us discuss the first couple
of contributions in some detail.
qc = a: This case is essentially equivalent to the single-well case discussed above, and we get

K0
E =

√
ω

πh̄
e−βω/2,

where ω = (λa2/3)1/2 is the frequency of small oscillations about the minimum of V .
qc = AI: This case is rather more interesting (that is to say, complicated!). Let us suppose
that the classical solution around which we expand consists of an anti-instanton at time τ1
and an instanton at τ2 (Figure 21); clearly τ2 > τ1.

Then we can write q = qc + y, and

SE [q] = SE [qc] + Squad
E [y].

We can evaluate SE[qc]: it is twice the action of a single instanton (assuming the I and A are
sufficiently far apart that any interaction is negligible): SE [qc] = 2S inst

E . The one-instanton
action S inst

E is

S inst
E =

∫

dτ
(

1

2
q̇2 + V (q)

)∣
∣
∣
∣
inst

= 2
∫

dτV (q)
∣
∣
∣
∣
inst

.

)τ
a

-a

q(

τβ/2−β/2

Figure 20: Multi-instanton configuration.
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With the instanton profile given by (58), the result is

S inst
E =

√

λ

3

2a3

3
.

To evaluate the PI with the action Squad
E [y], let us divide the imaginary time interval into

two semi-infinite regions I and II, where the boundary between the two regions is between
and well away from the A and the I (Figure 22).

Then we can write

K2
E =

β2

2
e−2Sinst

E

∫

I+II
Dy e−Squad

E
/h̄. (60)

Here the first factor represents integration over the positions of the A and I (remember that
the A must be to the left of the I!). The quadratic action can be written

Squad
E = Squad

E I + Squad
E II ,

where Squad
E I is the quadratic action in the presence of an anti-instanton and Squad

E II is that
in the presence of an instanton.

Then the PI separates into two factors:
∫

I+II
Dy e−Squad

E /h̄ =
∫

I
Dy e−Squad

E I
/h̄ ·

∫

II
Dy e−Squad

E II
/h̄, (61)

where there is an implied integration over the intermediate position at the boundary of the
two regions. The quadratic no-instanton PI also separates into two factors:

∫

Dy e−Squad,0
E /h̄ =

∫

I
Dy e−Squad,0

E I
/h̄ ×

∫

II
Dy e−Squad,0

E II
/h̄, (62)

where the superscript “0” denotes that this is the PI about a no-instanton (constant) back-
ground. We can combine (61) and (62) to give:

∫

I+II
Dy e−Squad

E
/h̄ =

∫

Dy e−Squad,0
E

/h̄

∫

I Dy e−Squad

E I
/h̄

∫

I Dy e−Squad,0
E I

/h̄

∫

II Dy e−Squad

E II
/h̄

∫

II Dy e−Squad,0
E II

/h̄
. (63)

q( )τ

τ

a

-a

Figure 21: Anti-instanton-instanton.
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But
∫

I Dy e−Squad

E I
/h̄

∫

I Dy e−Squad,0
E I

/h̄
=

∫ Dy e−Squad

E
/h̄

∫ Dy e−Squad,0
E /h̄

(64)

and similarly for the last factor in (63), so we obtain

∫

I+II
Dy e−Squad

E /h̄ =

√
ω

πh̄
e−βω/2R2,

where R is the ratio of the PI in the presence and absence of an instanton (or, equivalently,
anti-instanton) given in (64). Substituting this into (60),

K2
E = e−2Sinst

E /h̄

√
ω

πh̄
e−βω/2R2β

2

2
.

A similar argument gives

K4
E = e−4Sinst

E /h̄

√
ω

πh̄
e−βω/2R4β

4

4!
,

and so on for subsequent terms in the expansion (59).
Summing these contributions, we get

KE =

√
ω

πh̄
e−βω/2




1 +

(

βRe−Sinst
E /h̄

)2

2!
+

(

βRe−Sinst
E /h̄

)4

4!
+ · · ·






=

√
ω

πh̄
e−βω/2 cosh

(

βRe−Sinst
E /h̄

)

=
1

2

√
ω

πh̄
e−βω/2

(

eβRe
−Sinst

E
/h̄

+ e−βRe
−Sinst

E
/h̄
)

.

Now we must recall why we’re calculating this object in the first place. The propagator can
be written as in (53):

KE =
∑

n

〈a|n〉〈n |a〉 e−βEn/h̄.

τ

Region I Region II

Figure 22: Division of imaginary time into two regions, one containing the anti-instanton,
the other containing the instanton.




