You are here

Electronic noise due to temperature difference across atomic scale conductors: beyond standard thermal and shot noises Oren Tal

Thursday, June 7, 2018 - 11:15 to 12:30 Auditorium

Since the discovery of electronic thermal and shot noises a century ago, these two forms of fundamental noise have had an enormous impact on science and technology. They are regarded as valuable probes for quantum and thermodynamic quantities, but also as an undesired noise in electronic devices. While electronic thermal (Johnson–Nyquist) noise is activated by temperature, electronic shot noise is generated by a voltage difference. Recently, we identified a fundamental electronic noise contribution that is generated by temperature difference across nanoscale conductors. This noise, which we term as delta-T noise, is measured in atomic and molecular junctions, and analyzed theoretically using the Landauer–Büttiker–Imry formalism. The delta-T noise can be used to detect temperature differences across nanoscale conductors without the need for fabricating sophisticated local probes. This noise is also relevant for modern electronics! , since temperature differences are often unintentionally generated across electronic components. Taking into account the overlooked contribution of the delta-T noise in these cases, can be important for designing high performance electronics at the nanoscale. This work was done in collaboration with the research groups of Dvira Segal (Toronto U.) and Abraham Nitzan (Tel Aviv U. & Penn).