You are here
Thursday, January 24, 2019 - 11:15 to 12:30 Auditorium
Thermalization of near-integrable quantum systems is an unresolved question. We will present a new experiment that explores the emergence of thermalization in a quantum system by studying the dynamics of the momentum in a dipolar quantum Newton's cradle consisting of highly magnetic dysprosium atoms. This system constitutes the first dipolar strongly interacting 1D Bose gas. These interactions provide tunability of both the strength of the integrability-breaking perturbation and the nature of the near-integrable dynamics. The work sheds light on the mechanisms by which isolated quantum many-body systems thermalize and on the temporal structure of the onset of thermalization. We anticipate our novel 1D dipolar gas will yield insights into quantum thermalization and strongly interacting quantum gases with long-range interactions.