Weizmann Institute of Science
Faculty of Physics

 

Contact Information

Tel : 972-8-9342570
Fax :
972-8-9344106
Rm.
: 334 
Email: avraham.rinat@weizman.ac.il
 

Secretariat:
 Corinne Hasdai
Tel : 972-8-9343835 
Email: corinne.hasdai@weizmann.ac.il 

 

Avraham Rinat,
 

Professor Emeritus
Department of Particle Physics 
Weizmann Institute, 
76100
Rehovot
Israel
 
 

 

 

 

 

Current Research Interests

Inclusive scattering on matter.

One of  the universal problems in  physics is the description  of matter,
composed of many particles, when one has information on the nature of the
force between two  constituents.  The quest exists  in atomic, molecular,
nuclear and astro-physics, and to some extent in particle physics.

As always  there are  two aspects.   Can one  develop practical  tools to
compute matter properties and devise experiments which test those?

The above topic is one approach to  the problem.  It is a special case of
projectiles, which  are directed  towards a  target and  where subsequent
analysis  should  provide  information.   The simplest  type  is  elastic
scattering,  when the  projectile does  not loose  energy to  the target,
which remains  in the state it  was before the scattering.   However, the
projectile gets deflected from its original path and from it, one distils
information on  the distribution of  particles in matter.   Prime examples
are  x-ray diffraction  from  crystals and  the  distribution of  protons
inside a nucleus.

Occasionally  a  projectile  does  loose   energy  to  the  target.   The
probability of occurrence provides  specific information on the structure
of the target.

Inclusive scattering is a particular  kind of inelastic scattering, where
a  large amount  of  energy  is transferred  to  a  target, enabling  the
excitation  of  many modes,  without  there  existing information  for  a
selected  one.  The  same holds  for  the momentum  transferred.  In  the
experiment  one  deliberately detects  only  the  projectile, or  a  very
limited  of  other particles.   It  turns  out  that the  information  is
nevertheless very rich.

Had the projectile  hit only one particle which, due  to the large energy
imparted to it, had no opportunity  to scatter from others, a description
of the event must be simple  on account of energy-momentum balance in the
projectile-particle collision.   However, a particle  in a medium  has no
definite momentum.  As  a result, the experiment  gives basic information
on the probability that a constituent has a given momentum.

The description above assumes that one knows what the 'constituents' are.
What  particles does  one  see  if one  bombards  a  complex molecule,  a
nucleus,  or a  proton? The  answer lies  in the  energy involved  in the
encounter.  When growing, it will be  capable to excite finer details and
disclose ever  smaller sub-structures.   One may  thus bombard  a nucleus
with electrons  and in an analysis  find that the basic  constituents for
the given energy  are protons and nucleons,  undistinguishable from point-
particles.   Increasing the energy, one  will see that those nucleons have
finite dimensions.   Still increasing the energy  discloses that nucleons
are composed of quarks and gluons, etc.

In addition  to the above, one  encounters noise in each energy  regime: a
hit particle does not leave the  target without colliding with others and
those  modify the  simple picture  above.  That  noise can  be turned  to
information on how 2,3... constituents behave  in a medium of many, which
is a crucial question in many-body physics.
 
 
 
 

 

Homepage

 

Publications