
4 Cosmology

Recall: Hubble’s law, equivalent observers, H0 = 65± 8km/s Mpc.
The cosmological principle: homogeneous and isotropic.

4.1 Newtonian cosmology [2hr]

Consider first the evolution of a cold, pressureless, plasma.
Birkhoff & Newtonian cosmology.

r̈ = −GM

r2
= −4π

3
Gρr , r(r0, t) = a(t)r0 ⇒ ä = −4π

3
Gρa. (48)

ȧ0 = H0.

ρ = ρ0a
−3 ⇒ ȧ2 =

8π

3
Gρ0a

−1 +
(

H2
0 −

8π

3
Gρ0

)
. (49)

Critical density ρc = 3H2
0/8πG = 10−29h2

75g/cm3, a0 = 1

H2 ≡
(

ȧ

a

)2

= H2
0

[
ρ0

ρc
a−3 +

(
1− ρ0

ρc

)
a−2

]
. (50)

Age, fate. ρb0/ρc ∼ 10−2. Recall DM, so that ρ0 may be À ρb0.
Modification: λ. λ as additional length scale in GR- we’ll be discussed

later. Static:
ä = −4π

3
Gρa +

1
3
λc2a, (51)

with λ = 4πGρ0/c2 = (2/3)(ρ0/ρc)(H0/c)2. Modified Friedmann

ȧ2 =
8π

3
Gρ0a

−1 +
1
3
λc2a2 +

(
H2

0 −
8π

3
Gρ0 − 1

3
λc2

)
, (52)

or

H2 ≡
(

ȧ

a

)2

= H2
0

[
Ωa−3 + (1− Ω− Λ) a−2 + Λ

]
, (53)

with

Ω =
ρ0

ρc
, Λ =

ρΛ

ρc
, ρc =

3H2
0

8πG
= 1.05× 10−29h2

75g/cm3, ρΛ =
λc2

8πG
.

(54)
Revised discussion of age, fate.

For a ¿ 1 we have ȧ = (8πGρ0/3)1/2a−1/2, giving a ∝ t2/3 and tH = 2/3
as for an {Ω = 1,Λ = 0} universe.
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4.2 Radiation evolution

Recall CMB: Planck spec., T = 2.73◦K, Dipole, δT/T ∼ 10−5. Radiation
density:

nγ =
2ζ(3)
π2

(
T

~c

)3

= 0.244
(

T

~c

)3

= 420cm−3, uγ =
π2

15

(
T

~c

)3

T = 0.26eV/cm3.

(55)
Denoting the baryon density by nb,

η ≡ nγ

nb
= 0.7× 108Ω−1

b h−2
75 . (56)

Assuming photons decoupled from matter. Photon redshift:

λ(t + dt) = (1 + β)λ(t) = (1 + Hcdt/c)λ(t)

⇒ λ̇
λ = H = ȧ

a ⇒ λ ∝ a, (57)

and
1 + z ≡ λobs.

λemt.
=

1
a
. (58)

Conservation of Planck spec., T ∝ a−1. Comment on adiabatic expansion
(γ̂ = 4/3).

uγ ∝ a−4, ρ ∝ a−3, Matter-Radiation equality:

zeq. =
ρ0c

2

uγ
=

Ωρcc
2

uγ
= 2.3× 103(Ωh2

75/0.1). (59)

For z > zeq. energy density dominated by radiation, GR must be used
to derive dynamics. z > zeq.: Radiation domination, z < zeq.: Matter
domination.

Assume that at high T , for which the plasma is fully ionized, radiation
and matter are strongly coupled and in thermal equilibrium. For nγ À nb,
the internal energy and the pressure are dominated by radiation. The eos
is then e/nb = mpc

2 + 3p/nb, and Td(S/N) = d(e/nb) + pd(1/nb) (assum-
ing conserved number of baryons) gives p ∝ n

4/3
b for adiabatic processes,

implying T ∝ n
1/3
b and nγ ∝ nb. Thus, for thermal equilibrium we obtain

η = Const., i.e. η À 1 and given by its value today, and T ∝ 1/a (since
a3nb = Const.) as for free expansion.
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The ionized fraction is approximately given by eq. (17), which may be
written as

nI

n0
=

gI

g0
e−I/T ∼= (2mT/~2)3/2

ne
e−I/T

=
1

0.244
η

(
2mec

2

T

)3/2

e−I/T ≈ 1019T
−3/2
eV e−I/T . (60)

The plasma becomes neutral (”recombination” occurs) therefore at Trec. ≈
13.6eV/ ln(1019) ≈ 0.3 eV, zrec. = Trec./T0 ≈ 103. Exact calculation gives

zdec. = zrec. = 1.1× 103. (61)

Note that
zeq.

zdec.
= 2.1(Ωh2

75/0.1). (62)

zrec. is also the redshift at which radiation decouples from matter. Com-
paring the photon scattering rate, neσc, to the expansion rate, ȧ/a = H =
H0Ω1/2a−3/2 (for aeq. ¿ a ¿ 1), we have

neσc

H
=

ne0σc

Ω1/2H0a3/2
≈ 2× 103 Ωbh75

Ω1/2

σ

σT

( a

103

)−3/2
. (63)

For z > zrec. the electrons are free, σ = σT radiation and matter are cou-
pled. For z > zrec. the atoms are neutral, σ ¿ σT , and the radiation is
”decoupled”. While Trad. ∝ 1/a also for z > zrec., Tmat. ∝ 1/a2.

4.3 Relativistic evolution, z > zeq.

At early time, aeq. ¿ a ¿ 1, the a−3 term dominates and eq. (53) may be
approximated as

H2 =
8πG

3c2
e, (64)

where e is the energy density, dominated by rest mass. We will show later,
in the brief discussion of GR principles, that this equation is exact also for
the relativistic phase. When radiation dominates we therefore have

H =

[
8π3G

45c2

(
T

~c

)3

T

]1/2

= 0.9× 10−5T 2
eVyr−1. (65)

Since T ∝ 1/a we have ȧ ∝ 1/a, i.e. a ∝ t1/2 and tH = 1/2, i.e.

t = tH/2 = 1/2H = 0.5× 105T−2
eV yr = 2T−2

MeVs. (66)
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Mention entropy ”injection” to photons at particle annihilation (e±).
If eq. (64) is valid at all temperatures, ȧ/a ∝ a−2 and ȧ ∝ t1/2. The

age is proportional therefore to tH , t =
∫ a

da/ȧ = tH/2, and the the size
of causally connected regions is proportional to the Hubble distance, ct =
ctH/2 = dH/2. The current size of regions which were causally connected
at the time the temperature was T is

a−1dH(T )/2 = 70T−1
eV Mpc, (67)

corresponding to angular size

θ ≈ a−1dH(T )/2
c/H0

≈ 1◦h75T
−1
eV . (68)

Discuss causality problem, new physics at T > 1 TeV?

4.4 GR basics: I. Equivalence principle, metrics, Newtonian
limit [2hr]

4.4.1 The equivalence principle and the concept of a metric

Inertial and gravitational mass equivalence is naturally obtained by
the assumption that the effects of ~g is equivalent to measurements in an
”accelerating elevator,” x′i = xi + 1

2git2.
The Equivalence principle: For any point xµ = Xµ a locally inertial

coordinate system may be constructed, ξµ(xµ; Xµ), in which the laws of
physics in an infinitesimal region around Xµ are given by special relativity.
Inertial and gravitational mass equivalence is automatically obtained.

Remind special relativity ideas: 4-vectors, ηµν , ds2 = ηµνdxµdxν ,
ds2 = −c2dt2 + ~v2dt2 = −c2(1 − β2)dt2 = −c2dt2/γ2 = −c2dτ2 for massive
particles.

Massive particles:

−c2dτ2 = ηµνdξµdξν = ηµν
∂ξµ

∂xα

∂ξν

∂xβ
dxαdxβ, (69)

i.e.
−c2dτ2 = gαβ(xµ)dxαdxβ (70)

with

gαβ(Xµ) ≡
[
ηµν

∂ξµ(xµ;Xµ)
∂xα

∂ξν(xµ; Xµ)
∂xβ

]

xµ=Xµ

. (71)

The metric is invariant under Lorentz transformations of the local inertial
frames ξµ.
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The motion of a particle under gravity is described in the local inertial
frame by d2ξµ/dτ2 = 0, which may be written as

0 =
d

dτ

(
∂ξµ

∂xν

dxν

dτ

)
=

∂ξµ

∂xν

d2xν

dτ2
+

∂2ξµ

∂xν∂xρ

dxν

dτ

dxρ

dτ
. (72)

multiplying by ∂xα/∂ξµ we have

0 =
d2xα

dτ2
+ Γα

νρ(x
µ)

dxν

dτ

dxρ

dτ
, (73)

with the Christoffel symbol

Γα
νρ(X

µ) ≡
[
∂2ξµ(xµ; Xµ)

∂xν∂xρ

∂xα(ξµ; Xµ)
∂ξµ

]

xµ=Xµ

. (74)

For any given initial conditions, xµ(τ = 0) and dxµ/dτ(τ = 0), the particle’s
trajectory is determined by Γα

νρ(x
µ). Γα

νρ(x
µ) determines therefore the effect

of gravity. Similarly, for massless particles

0 =
d2xα

dσ2
+ Γα

νρ(x
µ)

dxν

dσ

dxρ

dσ
. (75)

Without proof: Given Γα
νρ(x

µ) and gαβ(xµ) at some point xµ = Xµ,
the local inertial frame at x = X, ξα(x;X) is determined in the vicinity of
x = X (up to a Lorentz transformation) up to (and including) (x−X)2.

The meaning of ”infinitesimal region around X” in the equiv-
alence principle is

[
∂gαβ(xµ;Xµ)

∂xλ

]

xµ=Xµ

= 0, (76)

where gαβ(xµ; Xµ) is the metric in the coordinate system ξµ(xµ;Xµ) at the
point ξµ(xµ; Xµ). That is, in the local inertial frame associated with the
point x = X the metric is ηαβ at x = X and its first order derivatives at
x = X vanish. Without proof: This implies

∂gαβ

∂xµ
= gβρΓρ

µα + gαρΓ
ρ
µβ. (77)

Adding the permutations with respect to αβµ (and multiplying by the in-
verse gαβ ≡ ηµν(∂xα/∂ξµ)(∂xβ/∂ξν) of gαβ), we find

Γα
µν =

1
2
gαρ

(
∂gµρ

∂xν
+

∂gνρ

∂xµ
− ∂gµν

∂xρ

)
. (78)
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This relation implies that the effects of gravity, Γα
νρ(x

µ), are determined by
the metric gαβ(xµ).

The condition c2 = −gαβ(xµ)(dxα/dτ)(dxβ/dτ), with gαβ(xµ) ≡ gαβ(xµ;Xµ =
xµ), can be chosen to hold at τ = 0. Eq. (77) ensures that if it holds at
τ = 0 it holds also at τ > 0.

4.4.2 Newtonian limit- slow motion in a stationary weak field

Slow motion implies that dxi/cdτ ∼ v/c ¿ dx0/cdτ = dt/dτ ∼ 1. The
equation of motion is therefore approximately given by

0 =
d2xα

dτ2
+ Γα

00(x
µ)

(
dx0

dτ

)2

. (79)

Weak field implies gµν = ηµν + hµν with h ¿ 1. Since the field is stationary
we have

Γ0
00 =

1
2
g0ρ

(
∂g0ρ

∂x0
+

∂g0ρ

∂x0
− ∂g00

∂xρ

)
= −1

2
g0i ∂g00

∂xi
= O(h2), (80)

Γi
00 =

1
2
giρ

(
∂g0ρ

∂x0
+

∂g0ρ

∂x0
− ∂g00

∂xρ

)
= −1

2
gij ∂g00

∂xj
= −1

2
∂h00

∂xi
+O(h2). (81)

Eqs. (80) and (79) imply dt/dτ = const., which allows replacing τ with t in
eq. (79) leading to, using eq. (81),

d2xi

dt2
=

1
2
c2 ∂h00

∂xi
. (82)

In order to obtain the Newtonian limit we must have h00 = −2Φ/c2+const..
Defining Φ to vanish at infinity (far away from sources) the constant must
vanish and we have

g00 = −
(

1 +
2
c2

Φ
)

. (83)

• Discuss meaning of weak field: Earth, Sun.

• Discuss time: For a stationary clock dτ =
√−g00dt = (1 + Φ/c2)dt.

Connect to redshift, Doppler in ”elevator”.
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4.5 The Friedmann-Robertson-Walker metric [2hr]

The cosmological principle: The universe is homogeneous and isotropic.
Choosing time as t(S) where is S some scalar field, e.g. TCMB, the sub-
spaces t = const. are homogeneous & isotropic. The metric is in general

−c2dτ2 = g00c
2dt2 + 2gi0cdtdxi + gijdxidxj . (84)

We must be able to choose a coordinate system where gi0 = 0, since oth-
erwise there is a preferred direction, gi0(x). Homogeneity implies g00 is a
function of t alone, so t may be scaled to give

−c2dτ2 = −c2dt2 + gijdxidxj . (85)

Without proof: The most general homogeneous and isotropic metric is

c2dτ2 = c2dt2 −R2(t)
[

dr2

1− kr2
+ r2dθ2 + r2sin2θdϕ2

]
, (86)

with k = −1, 0 or +1 (see below: Homogeneous and isotropic is equivalent
to maximally symmetric; All maximally symmetric with the same curvature
are equivalent). The spatial metric is invariant under rotations, r′i = Ri

jr
j ,

and quasi translations,

r′ = r + r0

[√
1− kr2 −

(
1−

√
1− kr2

0

)
r.r0

r2
0

]
, (87)

which translates the origin to r0.

gtt = −1, gij = R2(t)g̃ij , g̃rr =
1

1− kr2
, g̃θθ = r2, g̃ϕϕ = r2 sin2 θ.

(88)
At any t = t0 we may define x = R(t0)r for which the metric is g̃ij . The
dimension of gij is L2, since r is defined dimensionless. gij = R−2g̃ij .

Defining r(1) = r sin θ cosφ, r(2) = r sin θ sinφ and r(3) = r cos θ, the
metric may be written as

c2dτ2 = c2dt2 −R2(t)
[
dr2 +

k(r.dr)2

1− kr2

]
, (89)

where dr2 = δijdridrj and r.dr = δikr
kdri, so that

gtt = −1, gij = R2(t)g̃ij , g̃ij = δij +
k

1− kr2
δikδjlr

krl. (90)
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The sphere example. Consider the metric on the surface of a sphere
of radius R in 3D Eucleadean space. The 3D metric is ds2 = dx2+dy2+dz2,
and the sphere’s surface is defined by z2 = R2−x2−y2. Defining x = r cos θ
and y = r sin θ we have dx2 + dy2 = dr2 + r2dθ2 and z =

√
R2 − r2, dz2 =

r2dr2/(R2 − r2), so that the metric on the sphere can be written as

ds2 =
R2

R2 − r2
dr2 + r2dθ2 = R2

(
dr̃2

1− r̃2
+ r̃2dθ2

)
(91)

where r̃ = r/R. Give example of circle circumference,

D(r) = 2
∫ r

0

dr′√
1− r′2/R2

= 2R sin−1
( r

R

)
= 2r

[
1 +

1
6

( r

R

)2
+ O

(
r4

R4

)]
,

∫ 2π

0
dθr = 2πr < πD(r) = 2πr[1 + (r/R)2/6]. (92)

The spatial curvature is 1/R2.
Comoving observers. For the FRW metric

Γµ
tt =

1
2
gµα

(
2
∂gtα

c∂t
− ∂gtt

∂xα

)
= 0, (93)

which implies that r = const. is a solution of the equations of motion of a
particle. This in turn implies that t is the time measured by a clock at rest in
this coordinate system, i.e. at fixed r. We define a ”comoving observer” as
an observer sitting at fixed r. All such observers are equivalent, the universe
appears the same to all of them. r is termed the ”comoving coordinate.” A
comoving observer moves along x = R(t)r = [R(t)/R(t0)]R(t0)r = a(t)x0.

The proper distance is defined as

dprop(r, t) ≡
∫ r

0
dr′

√
grr(r′, t) = R

∫ r

0

dr′√
1− kr′2

= R(t)rf(r), (94)

with

f(r) =





sin−1(r)/r, k=+1;
sinh−1(r)/r, k=-1;
1, k=0.

(95)

Redshift. Light travels along cdτ = 0. For a photon emitted in the r̂
direction, c2dτ2 = c2dt2 − grrdr2, so that cdt =

√
grrdr = Rdr/

√
1− kr2.

A photon emitted from a source at r and received at r = 0 at time t was
emitted at time ti(r, t) given by

∫ t

ti(r,t)

cdt′

R(t′)
=

∫ r

0

dr′√
1− kr′2

= rf(r) (96)

29



Consider two signals emitted at ti and ti+δti at r, and received (at r = 0) at
t and at t+δt. The relation between δt and δti is obtained by differentiating
with respect to t, which gives R−1(t)−R−1(ti)∂ti/∂t = 0, i.e.

δt

δti
=

R(t)
R[ti(r, t)]

≡ 1 + z(r, t). (97)

A photon emitted at r with wavelength λ is measured as (1 + z)λ.
Angular diameter distance. What is the angular size of a sphere of

diameter D lying at r? Consider two photons emitted from the sphere’s
edges reaching us. They both move on fixed Ω̂, so that the size of the object
is given by D = rR[ti(r, t)]dθ (assuming of course D ¿ Rr). The angular
diameter distance is therefore

dA(r) = R[ti(r, t)]r = (1 + z)−1R(t)r. (98)

Luminosity distance. Consider a source emitting luminosity L sit-
ting at r. Our detector of diameter D occupies a solid angle πdθ2/4 =
π[D/2rR(t)]2 as seen by the source. Since the arrival time between photons
is larger than the emission time by 1+z and since the energy of each photon
is decreased by 1 + z, the flux observed is f = (πdθ2/4π)L/πD2(1 + z)2 =
L/4(1 + z)2πr2R(t)2. Defining dL by f = L/4πd2

L,

dL = (1 + z)R(t)r. (99)

r(z) for small z. Expand Ṙ as

Ṙ(R) = Ṙ0+
R̈0

Ṙ0

∆R+O(∆R2) = R0H0

(
1 +

R0R̈0

Ṙ2
0

∆R

R0

)
+O(∆R2) = R0H0(1−q0∆a)+O(∆a2),

(100)
where a = R/R0, q0 = −R0R̈0/Ṙ2

0, ∆a = a − 1 and we have defined H0 ≡
Ṙ0/R0. We then have

∫ t0

ti(r,t0)

cdt′

R(t′)
= R−1

0

∫ 1

a(r)

cda

aȧ
=

c/R0

H0

∫ 0

∆a(r)

dx

(1 + x)[1− q0x + O(x2)]

= −c/R0

H0

[
∆a(r) +

1
2
(q0 − 1)∆a2(r) + O(∆a3)

]
. (101)

Comparing with the rhs of the eq.,
∫ r

0

dr′√
1− kr′2

= r +
1
6
kr3 + O(r5), (102)
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we have

r =
c/R0

H0

[
−∆a− 1

2
(q0 − 1)∆a2 + O(∆a3)

]
, (103)

and

dL =
c

aH0

[
−∆a− 1

2
(q0 − 1)∆a2 + O(∆a3)

]
, (104)

or using ∆a/a = −z(r, t0)

dL =
c

H0

[
z +

1
2
(1− q0)z2 + O(z3)

]
. (105)

Comoving observers satisfy Hubble’s law for lowest order in z, deviations at
higher z provide information on ä. Identifying Ṙ0/R0 with the measured
value of H0 assumes the observed galaxies are ”comoving observers”.

4.6 GR basics: II. Physics laws, gravity, dynamics 1.5×[2hr]

4.6.1 Tensors and the laws of physics with gravity

The laws of physics are written in special relativity as equalities between ten-
sors and their derivatives. EM, e.g., is described by ηµν∂µ∂νA

α = −(4π/c)jα

for ∂µAµ = 0. These laws are the same in all frames, since the derivatives
of tensors are also tensors. This, however, is no longer true in GR. If V µ is
a vector then

∂V ′µ

∂x′ν
=

∂xβ

∂x′ν
∂

∂xβ

(
∂x′µ

∂xα
V α

)
=

∂xβ

∂x′ν
∂x′µ

∂xα

∂V α

∂xβ
+

∂xβ

∂x′ν
∂2x′µ

∂xβ∂xα
V α. (106)

The second term of the RHS destroys the tensor behavior (in special relativ-
ity the transformations are linear, and this term vanishes). Without proof:
We replace the derivatives with covariant derivatives,

DV δ

Dxγ
≡ ∂V δ

∂xγ
+ Γδ

γαV α, (107)

which conserve the tensor behavior (and reduce to ordinary derivatives in the
local flat frame). Similarly, for a vector defined along a path (e.g. particle
momentum), V µ(p) where p is a parameter along the path, we replace the
ordinary derivative with

DV δ

Dp
≡ dV δ

dp
+ Γδ

γα

dxγ

dp
V α. (108)

The prescription for writing the eqs. of phys.:
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1. Write special relativity eqs. in tensor form;

2. Replace d with D and ηµν with gµν .

4.6.2 Gravity

The result for weak field, g00 = −(1 + 2Φ/c2), may be written, recalling
∇2Φ = 4πGρ, as

∇2g00 = − 2
c2
∇2Φ = −8πGρ

c2
= −8πG

c4
T00. (109)

Recall Tµν = c−2(p + e)uµuν + pgµν. We therefore guess that the field eqs.
are

Gµν = −8πG

c4
Tµν , (110)

where Gµν is a tensor composed of gµν and its 1st and 2nd derivatives. The
requirements from Gµν are: (i) Symmetric tensor; (ii) Each of its terms
contains 2 derivatives in order for the dimensions to be L−2 (unless there is
a new constant with dimensions of length in the theory); (iii) gµαDαGµν = 0
to conserve energy; (iv) G00 = ∇2g00 in the Newtonian limit.

Without proof: The only tensor that can be formed from the metric and
its 1st and 2nd derivatives is the Riemann-Christoffel tensor,

Rα
βγδ ≡

∂Γα
βγ

∂xδ
− ∂Γα

βδ

∂xγ
+ Γα

δµΓµ
βγ − Γα

γµΓµ
βδ. (111)

Without proof: A necessary and sufficient condition for the existence of a
flat coordinate system (where the metric is ηµν) is that Rα

βγδ = 0 everywhere
(and that there is a point where gµν has 1 negative and 3 positive eigen-
values). This tensor is therefore called the curvature tensor. The parallel
displacement of a Sµ along a path is determined by DSµ/Dp = 0. It is
straightforward to show that for a closed infinitesimal path around some
point Xµ,

∆Sµ =
1
2
Rα

µβγ(Xµ)
∮

dxβxγSα. (112)

The Ricci tensor is Rβδ ≡ gαγRαβγδ and the curvature scalar is R ≡ gαβRαβ .
For the FRW metric, the curvature scalar of the spatial part is k/R2.

Without proof: The requirements (i-iii) imply Gµν = Rµν − gµνR/2.
Thus, the field equations are

Rµν − 1
2
gµνR = −8πG

c4
Tµν . (113)
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Contraction with gµν gives

R =
8πG

c4
gµνTµν , (114)

which may be used to write the field eqs. as

Rµν = −8πG

c4

(
Tµν − 1

2
gµνg

αβTαβ

)
. (115)

If we allow a constant with the dimensions of length, we may have Gµν =
Rµν − (1/2)gµνR − λgµν (where the dimensions of λ are L−2). This would
not give the correct Newtonian limit, so λ must be small enough. In this
case we have

Rµν − 1
2
gµνR− λgµν = −8πG

c4
Tµν . (116)

Comment on λ as part of Tµν , pλ = −eλ. Contraction with gµν gives

R =
8πG

c4
gµνTµν − 4λ, (117)

which may be used to write the field eqs. as

Rµν + λgµν = −8πG

c4

(
Tµν − 1

2
gµνg

αβTαβ

)
. (118)

4.6.3 Dynamics

For the FRW metric, the affine connections that do not vanish are

Γt
ij =

1
2
gtα

(
∂giα

∂xj
+

∂gjα

∂xi
− ∂gij

∂xα

)
= −1

2
gtt ∂gij

c∂t
=

RṘ

c
g̃ij ,

Γi
tj =

1
2
giα

(
∂gtα

∂xj
+

∂gjα

c∂t
− ∂gtj

∂xα

)
=

1
2
gik ∂gjk

c∂t
=

Ṙ

Rc
δi
j ,

Γi
jk = Γ̃i

jk, (119)

and the Ricci tensor is

Rtt = 3
R̈

c2R
,

Rit = 0,

Rij = −
(

1
c2

RR̈ +
2
c2

Ṙ2 + 2k

)
g̃ij . (120)
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We assume that the universe is filled with a plasma that may be consid-
ered a perfect fluid, for which Tµν = c−2(p+e)uµuν+pgµν . Using uµuµ = −c2

and gµ
µ = 4 we find

Sµν ≡ Tµν − 1
2
gµνT

λ
λ = (p + e)

uµuν

c2
+

1
2
(e− p)gµν . (121)

If the fluid is not at rest in the local ”freely falling frame” r = const., its
velocity would define a special direction. We therefore have u0 = dr0/dτ = c
and ui = 0, which gives

Stt =
1
2
(e + 3p),

Sit = 0,

Sij =
1
2
(e− p)gij . (122)

Comparing eqs. (120) and (122), we have

3
R̈

R
− λc2 = −4πG

c2
(e + 3p),

RR̈ + 2Ṙ2 + 2kc2 − λc2R2 =
4πG

c2
(e− p)R2. (123)

Comment on the similarity/difference from the Newtonian limit (3p, p ¿ e).
λ may be thought of an addition to the energy momentum tensor with

eΛ =
λc4

8πG
, pΛ = −eΛ. (124)

Substituting R̈ from the first eq. into the 2nd, we have
(

ȧ

a

)2

≡ Ṙ2

R2
=

8πG

3c2

(
e +

c4

8πG
λ

)
− kc2

R2

= H2
0

(
e

ρcc2
+

ρΛ

ρc
− kc2/H2

0

a2R2
0

)
(125)

with

ρc =
3H2

0

8πG
, ρΛ =

λc2

8πG
. (126)

Comparing this eq. with the Newtonian one we have derived,

H2 ≡
(

ȧ

a

)2

= H2
0

[
ρ

ρc
+

ρΛ

ρc
+

(
1− ρ0

ρc
− ρΛ

ρc

)
a−2

]
, (127)
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we identify a with R (up to scaling factor) and the current curvature is

k

R2
0

= −
(

1− ρ0

ρc
− ρΛ

ρc

)
H2

0

c2
. (128)

Comment on connection between curvature and energy content. Curvature
radius is of order c/H0 or larger, unless |ρ0 + ρΛ| >> ρc.

4.7 Perturbations 1.5×[2hr]

Explain ”Jeans scale”: Pressure support, speed of sound, λJ = cs(a/ȧ) =
(cs/c)λH (perturbations grow as power of a, see below), perturbations grow
for λ > λJ and oscillate for λ < λJ , λJ = λH for radiation domination,
λJ ¿ λH after decoupling. Consider λ À λJ at matter domination.

Consider a spherical region where the energy density is homogeneously
perturbed. Since we are discussing scales λ À λJ , the perturbed region
may interact with the rest of the universe only through gravity- the thermal
motion of particles leading to energy and momentum transfer (pressure and
diffusion effects) may be neglected. According to Birkhoff’s theorem, we
may ignore the gravitational effects of the universe outside our perturbed
sphere, provided that the universe is homogeneous outside the sphere. Al-
though we are discussing the evolution of a non-homogeneous universe, we
are considering only small, linear, perturbations. For such perturbations,
the gravitational effects of the inhomogeneities outside the sphere on the
evolution of the sphere, i.e. the interaction between perturbations, is a
second order effect, which may therefore be ignored.

The perturbed sphere would thus evolve as if it were a part of a homoge-
neous universe, where the energy density is everywhere different than that
of the unperturbed homogeneous universe. The evolution of the perturbed
region is therefore described by a solution a(t) of the equation (125), with
parameters that differ from that of the unperturbed universe. Since we are
free to choose the normalization of the expansion factor a, we shall choose
a normalization of a for the perturbed solution so that both the perturbed
and non perturbed universes have the same density for a = 1 (of course,
the two solutions may reach a = 1 at different times t). With this choice
of a normalization, Eq. (125) depends on a single parameter, the curvature
term α1 = kc2/R2

0. The solution for a(t) depends on one additional param-
eter, the integration constant of the first order differential equation. It will
be useful below to consider time, t to be a function of expansion factor, a,
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t(a;α1, α2), where α2 is the integration constant,

t = α2 +
∫ a da

ȧ(α1)
. (129)

The energy density has a power law dependence on a, e ∝ a−m with m =
3 for matter domination and m = 4 for radiation domination. Since we have
normalized a so that the energy density of both (perturbed and unperturbed)
solutions is the same for given a , the fractional energy density perturbation
related to a perturbation corresponding to modification of the parameters
αi is δ ≡ δe/e = −mδa/a = −ma−1(∂a/∂αi)δαi. Note, that the derivative
of a with respect to αi is taken at constant t, since the energy density
perturbation is defined as the difference between the density of the two
(perturbed and unperturbed) solutions at some fixed time t. The variation
of the solution a(t;α1, α2) with respect to αi, ∂a/∂αi, may be obtained by
the following consideration. Taking the partial derivatives with respect to
αi of the rhs and lhs of Eq. (129) at constant t we find,

0 =
∂t

∂α1
=

1
ȧ

∂a

∂α1
−

∫ a da

ȧ2

∂ȧ

∂α1
=

1
ȧ

∂a

∂α1
−

∫ a da

2ȧ3
, (130)

and
0 =

∂t

∂α2
=

1
ȧ

∂a

∂α2
+ 1 . (131)

Thus,
∂a

∂α1
= ȧ

∫ a da

2ȧ3
,

∂a

∂α2
= −ȧ, (132)

and the growth of the two perturbations modes is given by

δ1 ∝ ȧ

a

∫ a da

2ȧ3
, δ2 ∝ ȧ

a
. (133)

Note, that the evolution of perturbations is independent of the perturbation
wavelength, as long as λ À λJ .

At early time, a ¿ 1, we may approximate ȧ2 ∝ a2−m, with m = 3 for
matter domination and m = 4 for radiation domination, which implies

δ1 ∝ am−2 , δ2 ∝ a−m/2. (134)

The growing mode evolves as a2 during radiation domination, and as a
during matter domination.
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4.8 The parameters of the universe

• Approximation for dA(a):

dA(a) ≈ 2c

H0
a×

{
Ω−1, Λ = 0;
Ω−1/3, Ω ¿ 1, Ω + Λ = 1.

(135)

The angular scale corresponding to the size of the horizon at decou-
pling, λdec. = ac/ȧdec. = a(c/H0)(adec./Ω)1/2, is given by

θdec. ≈ 1
2
a

1/2
dec. ×

{
Ω1/2, Λ = 0;
Ω−1/6, Ω ¿ 1, Ω + Λ = 1.

= 1◦ ×
{

Ω1/2, Λ = 0;
Ω−1/6, Ω ¿ 1,Ω + Λ = 1.

(136)

Determination of θdec. from CMB observations, roughly the peak in the
angular power spectrum, provides a stringent constraint on the value of
Ω and Λ and hence on the geometry. MAXIMA/Boomerang/WMAP
give

Ω + Λ = 1.02± 0.02, where Ω ≡ ρm

ρc
, Λ ≡ ρλ

ρc
. (137)

This implies that the geometry is nearly flat,

k

R2
0

= (0.02± 0.02)
H2

0

c2
. (138)

• Taking the derivative of Friedmann’s eq. during matter domination,

ȧ2 = H2
0

[
Ωa−1 + Λa2 + (1− Ω− Λ)

]
, (139)

with respect to time and dividing by 2ȧ we have

ä = H2
0 (aΛ− Ω/2a2), (140)

from which we obtain

q0 ≡ −a0ä0

ȧ2
0

=
1
2
Ω− Λ =

3
4
(Ω− Λ)− 1

4
(Ω + Λ). (141)

q0 is therefore sensitive to Ω−Λ. Given Ω + Λ from CMB, measuring

dL(z) = (c/H0)[z + (1 + Λ− Ω/2)z2/2] (142)

using SNIa gives Ω − Λ. Combining CMB and SNIa, Λ ≈ 0.7. Com-
ment on systematics.
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• The neutron to proton ratio is kept at the equilibrium value, Nn/Np ≈
exp(−∆Mc2/T ) with ∆Mc2 = 1.3 MeV, by the interactions p + e ↔
n + νe and p + ν̄e ↔ n + e+ down to T = 0.8 MeV, at which point
the interaction rate drops below H. The ”freeze out” of Nn/Np at
Nn/Np ≈ 0.2 leads to the production of D, 3He, 4He (and some Li and
Be). The freeze out T , and the resulting isotopic ratios, depend on
the number density of nucleons. From measurements of D:H in distant
(”primordial”) gas clouds, Ωbh

2 ≈ 0.02. This is consistent with the
baryon density we see today and with the secondary peaks in the CMB
(recall λ < λJ), which give Ωbh

2 = 0.022 + 0.001 assuming k = 0 with
Ω + Λ = 1.

• The amplitude of the perturbations observed in the CMB, δT/T ∼
10−5, reflect the amplitude of perturbations in the baryons at a = adec.
For an {Ω = 1, Λ = 0} universe, the perturbations are amplified since
then by a factor 1/adec, see eq. (133), while for an {Ω ¿ 1,Λ = 0}
universe the growth is suppressed by a factor ∼ Ω. Such growth is not
sufficient to produce the large scale density fluctuations we see today
in the galaxy distribution, with δ ∼ 1 on 10 Mpc scale (comment:
10 Mpc< λdec). The common solution: adding non-baryonic ”dark-
matter”, that has weak electromagnetic coupling and decoupled from
radiation at a ¿ adec. It increases the amplitude of today’s fluctu-
ations by increasing the growth rate (through increase in Ω) and by
producing δm/δb ≈ adec/aeq. = 6(Ωh2

75/0.3) at adec. The latter effect is
due to the growth of fluctuations in dark-matter between aeq. and adec,
a period during which growth of fluctuations in the baryon component
is suppressed due to its coupling to the radiation (recall Jeans). The
required value of Ω, Ωh2

75 ' 0.3, is consistent with the dark-matter to
baryon ratio inferred from galaxy clusters, Ω/Ωb ' 7.

• New dark matter particles- most popular are Weakly Interacting Mas-
sive Particles (WIMPs), both direct (recoil) and indirect (annihilation
to γ, ν) searches, so far only upper limits. What Λ is- not known.

• Why the universe contains as much baryons as it does- unknown.
1/η = nb/nγ ∼ 10−9, known matter-anti matter asymmetry predicts
much smaller value.
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