Problem set 1: Stellar structure

May 8, 2010

1. (a) Use the virial theorem to estimate the mass $M(\mu)$ of a star for which the plasma particle pressure and the radiation pressure are comparable, assuming that the plasma particles are a (non-relativistic) ideal gas of mean molecular weight μ. What is $M\left(\mu=m_{p} / 2\right)$?
(b) Calculate $(\partial \log e / \partial \log \rho)_{S}$ for a non-relativistic ideal gas of mean molecular weight μ in thermal equilibrium with radiation. Express the results in terms of the ratio β between the photon and particle number density.
2. (a) Derive an approximate expression for the luminosity $L(M, R, \mu, K)$ of a low mass star of mass M, radius R and mean molecular weight μ, assuming that the opacity is well approximated by Kramers' $\kappa=K \rho T^{-7 / 2}$. For $\kappa\left(\rho=1 \mathrm{~g} / \mathrm{cm}^{3}, T=1 \mathrm{keV}\right)=$ $1 \mathrm{~cm}^{2} / \mathrm{g}$, how does the luminosity predicted by this expression (for $M=M_{\odot}, \mu=m_{p} / 2$) compare with the solar luminosity (you may assume H fusion threshold at $T=1 \mathrm{keV}$)?
(b) How much brighter than the sun would a $M=0.5 M_{\odot}$ Helium main sequence star be (you may assume it is composed of fully ionized He and that the He fusion threshold is 10 keV).
3. Consider a H sphere of mass M and radius R in hydrostatic equilibrium contracting due to emission of radiation. What is the minimum mass M that is required to achieve H ignition? [Hint: Consider the point where electron degeneracy pressure sets in, and compare L to the $p p$ fusion energy generation rate.]
4. Consider a ("stripped") star of mass $M \sim 1 M_{\odot}$ composed of fully ionized ${ }^{12} \mathrm{C}$. Estimate its luminosity L, temperature T, radius R and effective temperature $T_{\text {eff. }}\left(L=4 \pi r^{2} \sigma T_{\text {eff. }}^{4}\right)$, assuming that the energy
source is purely ${ }^{12} \mathrm{C}$ to ${ }^{24} \mathrm{Mg}$ fusion (use $S=10^{-22} \mathrm{~cm}^{2} \mathrm{keV}$, give the M dependence and the values for $\left.M=1 M_{\odot}\right)$.
5. (a) Express the criterion for stability against convection in terms of the temperature and pressure gradients, $d p / d r$ and $d T / d r$, for an ideal gas equation of state, $p=(\gamma-1) e$ for which $(\partial \log p / \partial \log \rho)_{S}=$ γ.
(b) Generalize the criterion for stability against convection for the case where the composition of the star depends on radius. Express you result using $(\partial p / \partial \rho)_{S, X_{i}}$ and $\left(\partial p / \partial X_{i}\right)_{S, \rho}$ where X_{i} is the mass fraction of element i.
