Problem set 2: Cosmology

June 6, 2010

1. Newtonian approximation. Consider the metric $d\tau^2 = dt^2 - a^2(t)d\mathbf{x}^2$ (FWR metric with k = 0). Define a new coordinate system by:

$$\xi^{0} = t + \frac{1}{2}\dot{a}(t)a(t)\mathbf{x}^{2}, \quad \xi^{i} = a(t)x^{i}.$$
 (1)

Calculate the metric in the new coordinate system in the vicinity of $\xi^i = 0$ up to second order terms in the spatial coordinates ξ^i . Hintit is easier to first calculate $g^{\mu\nu}$ up to second order terms in x^i . Show that this coordinate system is locally inertial at $\xi^i = 0$ (for any ξ^0). What are the velocities of the nearby (nearby = up to first order in ξ^i) comoving observers as a function of distance in this reference frame? Show that the accelerations of the nearby comoving observers are given by the Newtonian approximation $\xi^i = -\frac{1}{2}\nabla g_{00}$, are the conditions for the use of the Newtonian approximation satisfied? Show that the conditions for the validity of the expression of the gravitational mass of an ideal fluid, $\rho_G = \rho + 3p$, are satisfied at $\xi^i = 0$ and use it to write the (exact) Friedmann equation for \ddot{a} .

2. Comoving stars radiating at constant luminosity L and distributed homogenously throughout the universe (with a FRW metric) are lit at time t_0 . What is the flux measured by a comoving observer at time t_1 ? Write the answer in terms of the function a(t) and the density of stars at time t_1 . Calculate in two ways: (i) Sum up the contribution of the fluxes of the stars from which light had enough time to arrive; (ii) Write an equation for the local energy density in the emitted photons and integrate it from t_0 to t. Does the result depend on the value of the spatial curvature k? For $a(t) \propto t^{\alpha}$, what is the condition α has to satisfy so that the result will not diverge for $t_0 \to 0$. 3. The evolution equations for the cosmic scale factor, a(t), may be written as

$$H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{k}{a^{2}}$$
(2)

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \sum_{i} \rho_i (1+3\omega_i), \qquad (3)$$

where the present Hubble constant is positive, $H_0 > 0$, and the evolution of the energy density in component *i* is determined by

$$\frac{d\rho_i}{\rho_i} = -3(1+\omega_i)\frac{da}{a} \Rightarrow \rho_i \propto a^{-3(1+\omega_i)}.$$
(4)

- (a) For all forms of normal matter, $\rho_i > 0$ and $\rho_i + 3p_i = \rho_i(1+3\omega_i) > 0$. Argue that a universe with $k \leq 0$ will expand forever, and that a universe with k > 0 will eventually recollapse.
- (b) For a cosmological constant, ρ_{Λ} could be positive or negative and $\rho_{\Lambda} = -p_{\Lambda}$. Argue that a universe with $\rho_{\Lambda} < 0$ will eventually recollapse, independent of k, and that a universe with k > 0 and $\rho_{\Lambda} > 0$ may expand forever. Find a condition on $(\rho_{\Lambda}/\rho_m)_{t=t_0}$ for this to happen. Assume that $\Omega_0 \approx 1$. Find the (approximate) minimal ratio $(\rho_{\Lambda}/\rho_m)_{t=t_0}$ that will prevent forever recollapse.
- (c) Consider a universe that is flat and contains both matter and a cosmological constant ($\Omega = \Omega_{\Lambda} + \Omega_m = 1$). Prove that the age of such a universe is given by

$$t_0 = \frac{2}{3} H_0^{-1} \Omega_{\Lambda}^{-1/2} \ln \left[\frac{1 + \Omega_{\Lambda}^{1/2}}{(1 - \Omega_{\Lambda})^{1/2}} \right].$$
(5)

Find the lower bound on Ω_{Λ} for the universe to be older than H_0^{-1} .

4. **Reionization.** We have mentioned that the Universe plasma has been "re-ionized" at some redshift $z_{reion.} (\sim 10)$. CMB photons may be Thomson scattered on their way to us by the free electrons at $z < z_{reion.}$. Assume, for simplicity, that all H atoms were instantaneously ionized at $z = z_{reion.}$. Derive an approximate expression for the optical depth for scattering, $\tau(z = z_{reion.})$, for { $\Omega = 1, \Lambda = 0$ } cosmology. For what $z_{reion.}$ does $\tau(z = z_{reion.}) = 1$? If $\tau(z = z_{reion.}) > 1$, then CMB photons do not propagate freely, but rather diffuse, from $z = z_{reion.}$ till today. What effect would this have on the observed CMB anisotropy $\delta T/T$? On what angular scales?