
Problem set 3: Spectacular explosions

June 27, 2010

1. Hydro gymnastics.

(a) Lagrangian hydro eqs. Consider a one dimensional flow (i.e.
with planar, cylindrical or spherical symmetry) of an ideal fluid.
In this case the flow is described by functions of two variables, the
time t and position r. Define r(r0, t) as the position r at which
the fluid element, which was located at r = r0 at time t = t0, is
located at time t. Derive the fluid flow equations in terms of r0

and t (instead of r and t).

(b) Simple simple waves. An ideal gas (adiabatic index γ) of
uniform density ρ0 and uniform speed of sound c0 occupies the
half space x > 0, bounded by a planar piston at x = 0. At t = 0
the piston begins moving with constant acceleration a in the x
direction. Determine the resulting flow for both a > 0 and a < 0.
For the a > 0 case, determine the time t0 at which the solution
(e.g. the function v(x, t = t0)) becomes non single valued. What
happens at this stage?

2. SNR emission. A spherical shell of mass M and kinetic energy
E, ejected by a supernova explosion, expands into a uniform density
ISM of density nISM. Estimate the luminosity and spectrum of the
(thermal) Bremsstrahlung emission of the shocked ISM at the onset
of shell deceleration. Give numerical values normalized to M = 1M¯,
E = 1051 erg, nISM = 1cm−3. Determine the temporal evolution of the
luminosity and spectrum before and after the onset of deceleration.

3. Core collapse.

(a) Photodisintegration. Write the Saha equilibrium equation (re-
lating the densities nFe, nα and nn) for the Fe disintegration
reaction, 56

26Fe+γ ↔ 13α + 4n, assuming that the nuclei are
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not degenerate (i.e. follow a Maxwell-Boltzmann distribution).
You may assume that the statistical weights of the nuclear par-
tition functions are gi = 1, i.e. that the nuclei are at their
ground states (for what temperature range, roughly, will this be
a valid assumption?). Recall that the chemical potentials satisfy
µFe = 13µα + 4µn. Estimate the temperature at which half the
Fe is dissociated at the characteristic core density of 109g/cm3

(the dissociation energy is 124 MeV).

(b) Repeat 3(a) for He disintegration, 4
2He+γ ↔ 2p + 2n (the disso-

ciation energy is 28 MeV).

(c) Neutronization. Consider a cold (T = 0) ideal gas of protons,
electrons and neutrons. Assume that the neutrinos produced in
the e− + p → n + ν interaction freely escape the gas, and that
n → p + e− + ν̄ is not allowed due to electron degeneracy. Using
the equilibrium requirement µn = µp+µe, determine (i) The min-
imum density at which neutrons appear (you may assume that
the protons are not-relativistic at this density, and then verify the
validity of this assumption); (ii) The proton to neutron density
ratio obtained in the limit of infinite density; (iii) The (approx-
imate) density at which the proton to neutron density ratio is
minimal (and the value of this minimum).

4. Accretion disks. We have mentioned that in case the gas in-falling
onto a compact object has angular momentum, we expect the in-falling
gas to form a thin planar accretion disk. Assume that a compact object
of mass M is surrounded by a planar thin gas disk of inner radius R,
in which the gas is rotating at circular Keplerian orbits. Since the
angular velocity decreases outwards, viscosity between adjacent gas
rings tend to slow down the inner ring (transferring angular momentum
outwards). The loss of angular momentum leads to in-fall inward
motion, i.e. to accretion. Assume that the inward velocity vr is very
small compared to the Keplerian velocity vφ. For a steady disk, the
mass accretion rate Ṁ is uniform (independent of r).

(a) Assume that all the energy released by the in-fall, which is con-
verted to heat by the viscosity, is not stored in the gas but rather
radiated away instantaneously. Assume further that the energy
and angular momentum of the gas falling inward of R are simply
absorbed by the compact object. What is the luminosity per unit
radius of the disk, dL/dr? What is the total luminosity L?
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(b) Assume next that the compact object absorbs only a fraction
β of the angular momentum flowing through R (at a rate of
Ṁ
√

GMR). This may happen if the compact object is rotat-
ing and exerting a torque on the gas. How are dL/dr and L
modified? Hint: Show that the torque applied by the compact
object leads to energy extraction from the compact object at a
rate (1− β)ṀGM/R.

(c) Assuming that the emission is thermal, what is the disk temper-
ature T (r)?

(d) The disk has a finite thickness h. Neglecting the gravity of the
disk (i.e. taking into account only the gravity of the compact
object), assuming h/r ¿ 1, and requiring the gas to be in hy-
drostatic equilibrium (supported by pressure against gravity) in
the vertical direction (perpendicular the plane of the disk), show
that h/r ∼ cs/vφ. What is then required for the disk to be thin?

(e) Consider accretion on a NS producing L ∼ 1037erg/s, assuming
R ∼ RNS and β ≈ 1. Derive the numerical values of rdL/dr, h, T
and ρ at R. What is the optical depth (in the vertical direction)
as function of r, assuming the opacity is dominated by Thomson
scattering and that the gas is fully ionized?
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