
5 Spectacular explosions

Supernovae- super new (stars)- L ∼ 1042erg/s on tens of days times scale.
Divided to Type II- showing H lines, and Type I- no H lines. Within I:
Type Ia- showing Si lines, Ib/c- no Si lines, Ib with He lines, Ic no (or weak)
He lines. As discussed in § 3.4, Type II and Ib/c are believed to result
from core collapse (CC) of massive stars (with Ib/c being stripped of their
H envelope), while type Ia’s are believed to be produced by the accretion
induced collapse of WDs. We will discuss here CC SNe. The association of
SNe with CC of massive stars was motivated first by indirect evidence: (i)
The gravitational energy released in CC is sufficient to power the SN (Baade
& Zwicky 1934); (ii) Elemental abundances in SN expanding ejecta and in
SN remnants (SNR) may be explained by explosive nucleosynthesis in the
mantle of massive stars; (iii) Neutron stars (NSs) found at the centers of
SNRs. Direct evidence: Detection of ν’s from SN1987A, and association of
SN1987A with a BSG in the LMC.

5.1 Preliminaries: Hydrodynamics

Consider the velocity field v(x, t) of a non-relativistic ”ideal fluid” at LTE
(Local Thermal Equilibrium): its state at every point is determined by two
thermodynamic parameters, say p and ρ, with momentum flux tensor at its
local rest frame given by Πij = pδij (neglecting diffusive contributions from
gradients). We assume that the time scale for variations in the flow are long
enough to allow LTE, and that the length scales are large enough to allow
neglecting additional terms in Πij . Conservation of mass, d(

∫
V dV ρ)/dt =∫

V d3V ∂tρ =
∫
∂V d2S.(ρv) =

∫
V d3V∇(ρv) gives the continuity equation,

(∂t + v.∇)ρ + ρ∇v = 0. (143)

Conservation of momentum,
∫
V d3V ∂t(ρvi) =

∫
∂V dSjΠij with Πij = pδij +

ρvivj gives Euler’s eq.

(∂t + v.∇)v = −1
ρ
∇p. (144)

Note, (∂t + v.∇) is the gradient along a fluid element trajectory: For any
function f(x, t), df along a fluid element trajectory is df = ∂tfdt+∇f.dx =
∂tfdt+∇f.vdt = dt(∂t+v.∇)f . It is thus common to use d/dt ≡ (∂t+v.∇).
Since the fluid is always at LTE the entropy of fluid elements is conserved,
i.e. the flow is adiabatic, i.e.

ds/dt ≡ (∂t + v.∇)s = 0. (145)
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The 5 eqs., eqs. (143-145), determine the evolution of the 5 variables, {v, ρ, p}.
The relation between s and {p, ρ} is determined by the equation of state (eos)
of the fluid.

Using eqs. (143-145) (and Tds = dε + pd(1/ρ)) it is straightforward to
show that

∂t

(
1
2
ρv2 + ρε

)
+∇

[(
1
2
v2 + h

)
ρv

]
= 0, (146)

where ε is the internal energy (per mass) and h = ε + p
ρ the enthalpy.

Sound Waves. Consider a small perturbation to a uniform, static fluid:
ρ = ρ0 + δρ, p = p0 + δp. Linearizing eqs. (143-145), noting that v is first
order, we have

∂tδρ + ρ0∇v = 0, ∂tv + ρ−1
0 ∇δp = 0, ∂tδs = 0. (147)

Fourier transforming, f(x, t) ∝ exp(k.x− ωt),

ωδρ = ρ0k.v, ωv = ρ−1
0 kδp, ωδs = 0. (148)

A general perturbation, with given k, may be decomposed into 3 types of
perturbations: (i) Entropy perturbation: {δs 6= 0, δp = 0,v = 0, ω = 0}; (ii)
Adiabatic incompressible (∇v = 0 i.e. k ⊥ v) perturbations: {δs = 0, δp =
0,k.v = 0, ω = 0}; (iii) Adiabatic compressible perturbations {δs = 0, δp 6=
0,k ‖ v}. It is straight forward to obtain the dispersion relation for (iii),

ω2

k2
= c2

s, c2
s ≡

(
∂p

∂ρ

)

s

. (149)

Small pressure perturbations propagate with (group & phase) velocity cs,
the ”speed of sound”. For these perturbations, v = ±(δρ/ρ0)csk̂, implying
that the linear analysis applies for v/cs ¿ 1. For ideal gas eos, c2

s = γp/ρ so
that the speed of sound is comparable to the thermal velocity of the particles
(recall p/ρ = T/µ).

Shock Waves. It is possible to show that not only small perturbation
propagate at cs, but rather that any information can not propagate with
respect to the fluid faster than cs. What happens, then, when a piston
propagates at velocity v into a uniform fluid with some cs? When v > cs

there is no way for the information to propagate ahead of the piston, i.e.
there is no way to inform the fluid that it should move before the piston
”hits” it. In this case, a discontinuity in the flow forms, which propagates
ahead of the piston at a velocity larger than cs. That is, some transition layer
is formed within which the characteristic time and length scales for changes
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in the fluid properties are not sufficient to keep LTE. Assuming that the
thickness of this layer is small compared to the characteristic length scales of
the flow in which we are interested, we may consider it to be a discontinuity.

Across the discontinuity, the flux of mass, momentum and energy must
be conserved (the entropy may change since the fluid is not in LTE within the
transition layer). Consider thus a planar discontinuity at rest (we can always
examine a small part of the discontinuity layers which is approximately
planar, and choose our rest frame to coincide with that of the discontinuity).
Denoting by [f ] the difference between the values of any property of the flow
at the two sides of the discontinuity, we may write the conservation of mass,
momentum and energy as (see eqs. 143-145)

[ρvx] = 0, [p + ρv2
x] = [ρvxvy] = [ρvxvz] = 0, [ρvx(

1
2
v2 + h)] = 0, (150)

where we have chose the x direction to be perpendicular to the discontinuity
plane.

There are 2 types of discontinuities: (i) A tangential discontinuity in
which there is no mass flux across the discontinuity (i.e. it moves with the
fluid), ρvx = 0, accros which the pressure is continuous, [p] = 0, but the
tangential velocity may is discontinuous, e.g. [vy] 6= 0; (ii) A shock wave,
where there is mass flux, j = ρvx 6= 0 (i.e. the discontinuity propagates
through the fluid), and there is no tangential velocity jump, [vy] = [vz] = 0.

For the shock wave, it is straightforward to obtain

j2 = − p2 − p1

V2 − V1
, v1 − v2 =

√
(V1 − V2)(p2 − p1), (151)

and
h1 − h2 +

1
2
(V1 − V2)(p2 + p1) = 0, (152)

where the indices 1 and 2 denote values on the two sides of the discontinuity,
and V ≡ 1/ρ. We choose the velocities to be positive and the index 1 to de-
note the values of flow variables in the region where the fluid is approaching
the discontinuity. The shock velocity and the post-shock fluid velocity in
the frame where the pre-shock fluid is at rest are v1 and v1−v2 respectively.

Eq. (152) gives a relation between p2 and V2 for any given p1 and V1

(recall h(p, V )). This relation, say p2(V2; p1, V1), is called the Rankine-
Hougoniot ”shock adiabatic”. At the the discontinuity, the thermodynamic
parameters ”jump” from {p1, V1} to a point {p2, V2} on the shock adiabatic.
Eqs. (151-152) are also called the ”shock jump conditions”. Since eqs. (151)
give v1 and v2 as functions of p2 and V2 (for given {p1, V1}), the ”jump”
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is determined by a single parameter (p2, V2, v1 or v2). The entropy must
increase across the shock, s2 > s1. for all known eos this condition is sat-
isfied iff p2 > p1, which implies also v1 > v2 (deceleration) and ρ2 > ρ1

(compression). Thus, at the shock, the fluid is compressed and part of its
kinetic energy is converted to thermal energy. It is also possible to show that
v1 > cs1 and v2 < cs2. M1 ≡ v1/cs1 is called the ”shock Mach number”.

For ideal gas eos, h = γp/(γ − 1)ρ, in the limit M1 ≡ v1/c1 À 1,

p2

p1
=

2γ

γ + 1
M2

1 ,
v1

v2
=

ρ2

ρ1
=

γ + 1
γ − 1

, v1 − v2 =
2

γ + 1
v1. (153)

The post-shock speed of sound is

cs2 =

√
2γ(γ − 1)
γ + 1

v1. (154)

5.2 Core collapse SNe

Recall: stellar core evolution tracks, stars with 8 ≤ M/M¯ ≤ 70 develop
cores with Mcore > Mch and do not enter the pair-instability region, move
to Fe dissociation. At the relevant T ∼ 0.7 MeV, the core radius is Rc ∼
GMµ/T ∼ 108 cm and the core density is ρ ∼ 108.5g/cm3. The dissociation
of 56

26Fe to 13α + 4n requires 124 MeV. Leads to γ < 4/3, instability and
collapse. The characteristic collapse time is

tff ∼ 1√
Gρ

∼ 0.1ρ
−1/2
9 s, (155)

where ρ = 109ρ9g/cm3. At the onset of the collapse, tff ∼ R/cs. However,
as the collapse proceeds, tff ¿ R/cs, compare e.g. tff ∼ ρ−1/2 with cs ∝
ρ(γ−1)/2 and R/cs ∝ ρ−(3γ−1)/6 for adiabatic compression.

Neutronization. Inverse β-decay, e− + p → n + νe, converts p’s to n’s.
The threshold energy is (mn−mp)c2 = 1.3 MeV. At sufficiently high density,
the Fermi energy of the electrons may be high enough to prevent the decay
n → p + e + ν̄. Recall that for T = 0 we have pf,e = (3π2)1/3~n1/3

e , i.e.

pf,ec = 5(Yeρ9)1/3MeV, (156)

where Ye = ne/nb. As the collapse proceeds, neutronization proceeds through
e− + (Z, A) → (Z − 1, A) + νe.

Neutrino trapping. Neutrinos are scattered by e− and nuclei. Es-
timating σ ∼ G2

F A2E2
ν (for coherent nucleus scattering) and Eν = pf,ec
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we have σ ∼ 10−43A2ρ
2/3
9 cm2 and λν ∼ 1010A−1ρ

−5/3
9 cm. The neutrinos

become trapped when tff < (R/λν)(R/c), i.e. for

ρtrap. ∼ 3× 1011(M/M¯)−4/9g/cm3. (157)

At early stages of the collapse, ρ < ρtrap., νe’s escape and neutronization
proceeds via the inverse β-decay. At higher densities, neutrinos are trapped
and the resulting high Fermi energy of the neutrinos prevents neutronization.
This keeps Ye high and heavy nuclei present till nuclear densities are reached.

”Core bounce”. When nuclear densities are reached, ρnuc. ∼ 1014.5g/cm3,
the nucleon contribution to the pressure becomes large, the eos ”stiffens”,
and the collapse is halted. This occurs at a radius of

Rbounce ∼ 106(M/M¯)1/3cm. (158)

The gravitational energy released is

EG ∼ GM2

R
= 1053.5 (M/M¯)2

R/10km
erg. (159)

This energy leaks out from the core by the diffusion of neutrinos, on a time
scale of ∼ 3 s, giving Lν ∼ 1053erg/s. The characteristic ν energy is 10’s of
MeV (energy is carried by photons, pairs, ν’s).

Envelope ejection? Since the collapse of the outer shells is faster than
the speed of sound, the core collapse halt leads to the formation of a shock
wave that propagates outwards and decelerates the in-falling envelope. In
model calculations, the shock is stalled by the inflow, and eventually col-
lapses. The envelope is not ejected and falls back onto the nuclear density
core, which can not support it (see § 5.4) and collapses to a BH. As men-
tioned above, it is believed that the collapse of the core leads to SN explosion.
Thus, it is assumed that somehow the shock is ”revived” and expels the en-
velope. Current research- focuses on 3D effects (deviations from spherical
explosions). We first discuss the observational consequences of such expul-
sion. A discussion of the fate of the collapsed core that reached nuclear
density will be given later.

The energy required to expel the envelope is ∼ 1051 erg. Suppose such
energy is damped into the envelope. The thermal energy density will be
dominated by radiation, with

T0 ∼ 200
E

1/4
51

R
3/4
∗,13

eV, (160)
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where E = 1052E51 erg, and the stellar radius is R∗ = 1013R∗,13 cm. Note
that the thermal energy carried by the particles is only∼ 1048 erg. The shock
expanding in the envelope is thus mediated by radiation. The characteristic
expansion velocity is

v ' 109 E
1/2
51

(M/M¯)1/2
cm/s. (161)

At the early stages of the expansion, the photon diffusion time, tD =
R2/λc ≈ R2κρ/c ≈ κM/4Rc ≈ 6 × 108(M/M¯)R−1

13 s (assuming elec-
tron scattering opacity and full ionization), is larger than the expansion
time, td = R/v ≈ 104R13(M/M¯)1/2E

−1/2
51 s. As long as tD À td we

may approximate the expansion as adiabatic, for which T ∝ R−1 and
Erad ∝ R3T 4 ∝ R−1, and the luminosity L = Erad/tD ∝ R0. Thus, we
expect constant bolometric luminosity,

L ≈ E

tD(R = R∗)
≈ 2× 1042 E51R∗,13

M/M¯
erg/s, (162)

up to the time at which tD = td, i.e. up to

R ≈ 2.5× 1015E
1/2
51 (M/M¯)1/2, t ≈ 2.5× 106E

−1/4
51 (M/M¯)3/4s. (163)

At this time the temperature is

T ≈ 1
R

1/4
∗,13

E
1/4
51 (M/M¯)1/2

eV, (164)

the radiation escapes, and at later times L decays exponentially.
Explosive nucleosynthesis, radioactive decay. As mentioned in

§ 4, cosmological nucelosynthesis produces D, He, and traces of Li, Be. As
explained in § 3.4.1, heavier nuclei from C to Ca are produced by fusion in
stars. Fe group nuclei approximately in 0.1 MeV NSE, consistent with ex-
plosive synthesis in SN shocks. Mention s and r processes: Slow (s) process-
neutron capture up to β-decay; Rapid (r) process- rapid neutron capture in
high neutron flux environment, leading to neutron rich isotopes. Radioac-
tive nuclei produced in the explosion decay and may contribute to the SN
light emission: 56Ni to 56Co at 6.1 d and 1.7 MeV, 56Co to 56Fe at 77.1 d
and 3.8 MeV, giving E/M ' 1017erg/g = 2 × 1050erg/M¯. Production of
UV/O emission requires absorption of the gamma-rays and their conversion
to heat in the expanding envelope.
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5.3 Supernova remnants (SNRs): Thermal emission

The SN ejecta expands into the ISM at a velocity v ∼ 104km/s which far
exceeds the ISM cs ∼ 10km/s (T ∼ 1 eV). This implies that the ejecta drives
a strong shock, v1 = (γ +1)v/2 (see eq. 153) and M1 = v1/cs1 À 1, into the
ISM. Since the post shock speed of sound and fluid velocity are comparable
(compare v1 − v2 and cs2 in eqs. 153, 154), the total energy carried by the
shocked ISM is comparable to MSv2, where MS is the mass of the shock
ISM. When this mass becomes comparable to the mass of the ejecta, most
of the kinetic energy stored in the ejecta is transferred to the shock ISM. As
the shock continues to expand and mass of shocked gas MS increases, the
shock must decelerate. Conservation of energy implies E ∼ MSṘ2 where R
is the shock radius. For uniform density ISM, MS ∝ R3 and Ṙ ∝ R−3/2.
The deceleration radius may be estimated requiring MS to equal the ejecta
mass M ,

Rdec ∼
(

M

4πnmp/3

)1/3

= 6.5×1018

(
M/M¯

n0

)1/3

cm = 2.1
(

M/M¯
n0

)1/3

pc,

(165)
where n = 100n0cm−3 is the ISM density, and the deceleration time is

tdec ∼ Rdec

v
= 210

(M/M¯)5/6

n
1/3
0 E

1/2
51

yr. (166)

For R À Rdec, we have MS À M and a shock radius which is much
larger than the characteristic size of the exploding object. It is reasonable
to assume that at this stage the flow is no longer dependent on the exact
details of the initial conditions, i.e. of the size and mass of the region in
which the energy is initially deposited and of the initial spatial distribution
of the fluid properties within this region. If this is the case, the flow should
be completely determined by the explosion energy E and by the density and
pressure of the ISM into which the shock expands, ρ0 = n0mp and p0. For a
strong shock, p2 À p1 = p0, the flow is also independent of p0. The flow is
determined by the hydrodynamic eqs. (143-145) with boundary conditions
at the shock front given by the shock jump conditions. For an ideal gas eos,
and as long as the shock is strong, these boundary conditions are given by
eqs. (153,154).

The hydrodynamic eqs. contain no dimensional parameters. For an
ideal gas, the eos, e = p/(γ1)ρ, does not contain any dimensional param-
eters either. The flow fields, p, ρ and v, are functions of {E, ρ0, r, t, γ},
and that R is a function of {E, ρ0, t, γ}. The dimensions of any variable
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f may be considered to be a 3-dimensional vector {αL, αM , αT } such that
[f ] = LαLMαM TαT . R is determined by 3 dimensional parameters with in-
dependent dimensions (i.e., with independent dimension vectors), {E, ρ0, t}.
Since the dimensions of these parameters are independent, there is only one
product of powers of them which has the dimensions of length, (Et2/ρ0)1/5,
and there is no product of powers of these parameters which is dimensionless.
This implies that R must be of the form

R = ζ(γ)
(

E

ρ0
t2

)1/5

= 2.9ζ(γ)
(

E51

n0

)1/5

t
2/5
10 pc, (167)

where t = 1010t10s, 1010s ' 300 yr. Note that this satisfies the energy
conservation result Ṙ ∝ R−3/2. ζ(γ) is a dimensionless function, with values
close to unity. The post shock density is enhance by a factor (γ+1)/(γ−1) ∼
4, so that most of the shocked ISM is compressed into a shell of thickness
∆/R ∼ (γ − 1)/3(γ + 1) < 0.1. The temperature of the post shock plasma
is (see eq. 154)

T ≈ 2(γ − 1)
(γ + 1)2

µṘ2 ≈ 10
(

E51

n0

)2/5

t
−3/5
10 keV. (168)

We therefore expect thermal X-ray emitting shells of several pc radius on
a time scale of thousand years following the SN explosion. The distribution
of SNR radii should follow NSNR(< R) = ṄSN t(R) ∝ R5/2, where Ṅ is
the NS rate. Such remnants are observed both in the Milky Way and in
the SMC/LMC, with properties consistent with those described above. In
some cases, the remnants are associated with documented SNe, like SN1054
(exploded in 1054, remnant 1000 yrs old).

The remnant parameters {E, ρ0, t} may be inferred from the measured
radius R, X-ray luminosity (dominated by Bremsstrahlung) and tempera-
ture (inferred from the spectrum). In most Galactic cases, the distance,
and hence R, is not accurately known, leading to uncertainties in inferred
parameters. Another uncertainty is due to the possibility that the electrons
and ions are not in thermal equilibrium (see § 5.5).

5.4 Some comments on Neutron Stars (NSs)

As ν’s escape the core becomes a (cold) NS. Assuming ideal degenerate cold
neutron gas, the mass-radius relation is obtained in a manner similar to that
for WDs, see eq. (46),

RNS ≈ 4.3
~2

Gm
8/3
p

M−1/3 = 12(M/M¯)−1/3km. (169)
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The maximum mass is obtained when the degenerate neutrons become rel-
ativistic, see eq. (47),

MNS < 3.5
(
~c

Gm2
p

)3/2

mp = 5.6M¯. (170)

These results are not accurate, since we neglected the strong interaction
between neutrons at nuclear densities (and also GR corrections, Φ/c2 =
GM/RNSc2 ∼ 0.1). The eos at nuclear densities is not known and is a
subject of current research, commonly used eos reduce the maximum mass
to ∼ 3M¯. It is hoped that NS M −R relation measurements would help in
constraining the eos (so far not accurate enough, see e.g. arXiv:1005.0811).

Evidence for the existence of NSs: Pulsars & X-ray binaries.

5.4.1 Pulsars

Pulsars were first detected in ’68- radio sources emitting a periodic ra-
dio signal, with periods ∼ 1ms < P <∼ 10 s (∼ 2000 now known, see
arXiv:1004.2730). Angular distribution (of the objects) implies Galactic
sources. No luminous star identified to be associated. The period suggests
an upper limit to the size, R < cP ∼ 300 km. Estimating the minimum den-
sity for a gravitationally bound rotating/pulsating object from t > 1/

√
Gρ

we have
ρ > 1013(P/1ms)−2g/cm3. (171)

The high density and small radius require a NS.
P is highly stable, measured for pulsars with 10-13 significant digits. P

grows slowly with time, typically P/Ṗ ∼ 1010 s. If the periodicity is due to
NS rotation, the associated energy is Erot. = 1

2Iω2, ω = 2π/P . The exact
value of the moment of inertia depends on the eos. Roughly,

Erot. =
1
2
Iω2 ' 3

10
MR2ω2 = 2× 1050(M/M¯)R2

6P
−2
−2 erg, (172)

where R = 106R6 cm and P = 10−2P−2 s. The growth of P implies rota-
tional energy loss at a rate of

−Ėrot. = −Iωω̇ = 2Erot.
Ṗ

P
= 2× 1040(M/M¯)R2

6P
−2
−2

(
Ṗ

P

)

−10

erg
s

, (173)

where Ṗ /P = 10−10(Ṗ /P )−10s−1.
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The Crab pulsar is located at the center of the Crab nebula- a SNR
consistent with the SN documented to have exploded in 1054. The SNR
shell is filled with radiation emitting plasma (radio to gamma-rays), the
”nebula”. The rate at which energy is inferred to be deposited in the nebula
(to account for the emitted radiation) is Ė ∼ 1039erg/s. The rotational
energy loss implied for this pulsar, with P−2 = 3.3 and (Ṗ /P )−10 = 0.13,
is −Ėrot. ∼ 1039erg/s, suggesting that the nebula is powered by the energy
loss of the pulsar. An age estimate of ∼ P/Ṗ ∼ 103 yr is consistent with
SN1054.

It was speculated, before the discovery of pulsars, that NS may be born
with strong magnetic fields, due to the amplification of the stellar magnetic
field during collapse (the magnetic field at the surface of the Sun is ∼kG).
A magnetized rotating NS would lose energy through emission of electro-
magnetic waves at a rate Ė = −2|m̈|/3c3 where the magnetic dipole may
be estimate as BR3. In order to account for the energy loss, we need

B ∼ c3/2Ė1/2P 2R−3 = 1013Ė
1/2
39 P 2

−2R
−3
6 G. (174)

It is thus inferred that NS are highly magnetized.

5.4.2 X-ray pulsars and X-ray binaries

X-ray sources were detected in the early ’60’s. Angular distribution- suggest-
ing Galactic sources. Many discovered to pulsate, P ∼ 1 s. Many associated
with optically identified stars, which are in a binary system (inferred from
periodic Doppler shifts of their spectral lines) with an optically-invisible
companion. The optically invisible companion may be a WD or NS. The
short period implies ρ > 107g/cm3. Marginal for WD, and heating the WD
surface to keV would ”puff” it up to radii much larger, and densities much
lower, than those of cold WDs. Hence, the companion is likely a NS.

The mass M1 of the invisible companion may be inferred from the veloc-
ity and mass M2 of the optically identified star. For circular orbits we have
(see § 3.1)

f(M) ≡ (M1 sin i)3

(M1 + M2)2
=

v3
1obs,maxT

2πG
, (175)

where i is the orbit’s inclination angle. Determining M2 from the optical
data, constraints on M1 are implied with uncertainty largely due to uncer-
tainty in i. For eclipsing X-ray binaries, i = π/2, the companion mass can
be inferred rather accurately- see e.g. van der Meer et al. 2007 (A&A 473,
523), who give M1/M¯ = {1.1, 1.3, 1.3} ± 0.1 for 3 ”famous” binaries.
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Figure 6: NS masses inferred from binary systems observations, van der
Meer et al. 2007 (A&A 473, 523).

In some cases, where the inferred mass is larger than 3M¯ (e.g. Cyg
X-1 with M1/M¯ > 3.4), it is argued that the companion must be a black
hole (see Table 1 of Remillard & McClintock 2006, ARA&A 44, 49). Some
caution should be applied here though: the maximum mass of NSs is uncer-
tain, and the error bars on the minimum values of M1 should be carefully
examined (1σ, 2σ ...).

The X-ray luminosities of the binaries, LX ≤ 1038erg/s, provide an ad-
ditional clue to the nature of the system. The thermal luminosity of a NS
heated to keV temperature would be

LX = 4πR2σT 4 = 1037R2
6T

4
keVerg/s, (176)

consistent with the observed luminosities. Note also that the lunminosities
do not exceed the Eddington luminosity, eq. (23), for a solar mass object.

5.4.3 Double NSs

Rare (7 systems), provide best measurements of masses, plus GR tests. 6
systems with 1 pulsar, 1 system (PSR J0737-3039) a double pulsar. The
velocity(ies) is(are) determined from the variations in the pulse(s). The
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6 system parameters {m,M, a, e, i, φ} (see § 3.1) are determined from the
observed velocity(ies) ({e, φ} from functional form, mass ratio from velocity
ratio, total mass from period and velocity up to sin i) and GR effects: the
relativistic periastron advance, ω̇, the orbital decay due to gravitational wave
damping, Ṗb, and the gravitational redshift and time dilation parameter,
γ. Thus, the system may be over-constrained (both for single and double
pulsars), providing both accurate mass determinations (see fig 6) and tests
of GR (actually- of the post-Keplerian parameters, which are measured to
satisfy GR relations).

5.5 SNRs: Non thermal emission, collisionless shocks, and
cosmic-rays (CRs)

SNRs are observed to emit non-thermal radiation: νLν ∝ ν0.5 from ra-
dio to X-rays, interpreted as synchrotron emission of relativistic electrons
with energy distribution dne/dpe ∝ p−2

e reaching cpe ∼ 100 TeV (~ωsyn =
~γ2

eeB/mec = 1γ2
e,8B−5 keV where γe,8 = pe/108mec and B = 10−5B−5G),

and high energy emission at TeV energies, interpreted as inverse-Compton
scattering of CMB photons by the same high energy electrons (γ2

ehνCMB =
10γ2

e,8 TeV). The power-law energy distribution of the electrons extending to
energies far exceeding the thermal SNR energy of ∼ 10 keV, is inconsistent
with the exponential distribution, ∝ exp(−Ee/T ), expected for a plasma in
thermal equilibrium.

5.5.1 Collisionless shocks

The mean free path (mfp) for Coulomb collisions under the conditions of
interest, n0 ∼ 1 and T ∼ 1 keV, may be estimated as follows. A strong
deflection of a proton by another proton requires passage at a distance d ∼
e2/T so that the mfp is

l ∼ 1
nπd2

∼ T 2

πne4
= 1019 T 2

keV

n0
cm. (177)

This length scale is larger than (or comparable to) the SNR size. This
implies that Coulomb collisions can not provide the scattering mechanism
that randomizes the particles’ velocities, converting part of their kinetic
energy to thermal energy, in the shock transition layer.

In the absence of a scattering process, the fast ejecta plasma would ”fly”
through the ISM plasma. However, such a situation, where the particle ve-
locity distribution is highly anisotropic (considering both the ejecta and ISM
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particle populations), collective plasma instabilities would develop. Electro-
magnetic and electrostatic plasma waves, related to collective (macroscopic)
particle motions, develop at a rate comparable to the plasma frequency,
ωp,i =

√
4πne2/mi, leading to isotropization of the velocity distribution.

The characteristic length scale of the waves is the plasma skin depth, c/ωp,i.
For scattering of protons, that carry most of the momentum and energy,

c/ωp,p =
√

4πne2/mp = 3× 107n
−1/2
0 cm. (178)

We therefore expect a ”collisionless shock”, for which Coulomb collisions
may be ignored, to develop, with a shock transition layer of thickness ∼
c/ωp,p. Since Coulomb collisions are not important, they also do not bring
the particles to thermal equilibrium past the shock. In the collisional shock
case the post-shock plasma is in thermal equilibrium, and its properties are
completely determined by the shock jump conditions, independent of the
details of the physics within the shock transition layer. In the collisionless
case, the post shock plasma is not thermal, and its properties depend upon
the details of the processes operating within the transition layer. For this
reason, the structure of collisionless shocks and the properties of the post
shock plasma are still an open problem. Numerical plasma simulations in-
dicate that collisionless shocks do form, with a transition layer of ∼ 10c/ωp.

Observations and numerical simulations suggest that the energy density
of EM waves within the plasma transition region is close to ”equipartition”,
i.e. comparable to the kinetic energy density, B2/8π ∼ ρ1v

2
1. For such a

field, the Larmor radius of an incoming proton is RL = mpv1c/eB ∼ c/ωp,p.
Thus, ”thermal” protons are scattered on a skin depth scale provided the
field is close to equipartition.

5.5.2 Particle acceleration

Let us assume that some process ”up-scatters” some particles to energy much
larger than thermal, À mpv

2
1. Such particles will have RL À c/ωp,p, and

will therefore cross the shock transition unaffected. Let us further assume
that magnetic field irregularities carried by the flow scatter these particles
as they propagate through the plasma both in the upstream (ahead of the
shock) and in the downstream (past the shock). In this case, the particles
may be scattered several times across the shock, before ”escaping” to the far
downstream (we assume that they never escape to the far upstream, since
in an infinite system they will always be scattered back into the shock).

Consider a relativistic particle crossing the shock several times. Let us
choose the flow velocity to be negative in the x-direction (i.e. v = −v1 at
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x > 0, v = −v2 at x < 0). We assume that the particles do not change their
energy when deflected within the up- or down-stream flows. In this case,
each time a particle crosses from down to upstream and back its energy is
increased by a factor of ∼ (1 + ∆v/c) where ∆v = v1 − v2. This is due to
the fact that a particle of energy E measured in the downstream frame has
a Doppler boosted energy (1 + cos θ∆v/c)E in the upstream frame, where
θ is the angle between the particle momentum and (the positive direction)
x. Since crossing from down to upstream requires cos θ > 0, the particle
energy is larger in the upstream frame. Similarly, for particles crossing from
up to downstream, the energy is larger by a factor (1 + | cos θ|∆v/c)E (the
factors are larger than 1 in both cases since both in the up and downstream
an observer moving with the plasma sees the plasma at the other side of the
discontinuity as approaching him).

Let us consider therefore a system in which a relativistic particle of initial
energy E0 undergoes scattering, such that (i) Its energy after scattering is
(1 + f) times its energy prior to scattering, where f is a random variable
with distribution independent of the particle energy and f̄ ¿ 1, and that
(ii) Between two collisions the particle has an energy independent escape
probability Pesc. What is the probability distribution of the energy with
which the particle leaves the system? The energy after the k-th scattering is
Ek =

∏k
i=1(1 + fi)E0, so that ln(Ek/E0) =

∑k
i=1 ln(1 + fi). For Ek/E0 À 1

we must have k À 1 (since f̄ ¿ 1). For large k, the distribution of ln(Ek/E0)
would be normal with average kln(1 + f) ≈ kf̄ and variance of ≈ kσ2

f where
σ2

f is the variance of f . Thus, for k À 1 we have a narrow distribution of
Ek/E0, centered around Ek/E0 = exp(kf̄). The probability for k or more
collisions prior to escape is (1−Pesc)k, so that the probability for escape with
energy > E is P (> E) = (1 − Pesc)ln(E/E0)/f̄ = (E/E0)ln(1−Pesc)/f̄ , which
in the limit of Pesc ¿ 1 is P (> E) = (E/E0)−Pesc/f̄ . Thus, the differential
energy distribution of escaping particles is

dN

dE
∝

(
E

E0

)−1−Pesc/f̄

. (179)

Let us calculate next f̄ and Pesc for the collisionless shock scattering case.
Consider the spatial and angular distribution of particles of fixed energy E.
This distribution is determined by solving the transport equation of the
particles, taking into account the scattering. As we will see below, for non
relativistic shocks, v1/c ¿ 1, the particle distribution is nearly isotropic in
the plasma frame. In this case, particle transport may be approximately
described as diffusion, with diffusion coefficient D = λc/3, where λ is mfp
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(recall the discussion of photon diffusion in stars). Conservation of particles
reads

∂tn +∇j = 0, j = nv −D∇n, (180)

where n is the particle density and j is the flux. For our case, this eq.
reduces to

v∂xn = ∂x(D∂xn). (181)

This eq. holds separately for x < 0 and x > 0, and n should be continuous
at x = 0 (we assume the shock to be infinitesimally narrow compared to the
particles’ Larmor radius). This eq. has two solutions,

n = n0, n = n0 exp[
∫ x

0
dx′v/D(x′)]. (182)

Recalling that v < 0 and requiring n(x = +∞) = 0, we must have

n = n0

{
1, x < 0;
exp[−v1

∫ x
0 dx′/D(x′)], x > 0.

(183)

The distribution decays in the upstream on a scale L = D/v1 ∼ λc/v1, so
that L/λ ∼ c/v1. Thus, for v1 ¿ c we have L/λ À 1 which ensure isotropy.
For relativistic shocks the distribution is highly anisotropic, the diffusion
approximation is not valid, and the solution is more complicated.

Pesc is obtained from comparing the flux of particles escaping at x = −∞
to the flux of particles crossing the shock into the downstream at x = 0,

Pesc =
−j(−∞)

j−(0)
=

n0v2

− ∫ 2π
0 dφ

∫ π
π/2 dθ sin θ n0

4π c cos θ
=

4v2

c
. (184)

f̄ is obtained by considering the average Doppler boost of the particle’s
energy in crossing from down to upstream and back. For crossing from
down to upstream we have

E′/E =

∫ π/2
0 dθ sin θ cos θ(1 + ∆β cos θ)

∫ π/2
0 dθ sin θ cos θ

= 1 +
2
3
∆β, (185)

where ∆β = (v1 − v2)/c. Since the boost for up to downstream crossing is
the same, we have

f̄ =
4
3

v1 − v2

c
, (186)

and
Pesc

f̄
=

3
(v1/v2)− 1

. (187)
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The resulting particle distribution, eq. (179) is therefore independent of the
details of the scattering process, depends only on the shock jump conditions.
For a strong shock in an ideal gas with γ = 5/3 we have Pesc/f̄ = 1 and
dN/dE ∝ E−2. This is consistent with the electron spectrum required to
explain the SNR non-thermal emission, as well as the non-thermal emission
in many high energy astrophysical sources, and also the CR spectrum in the
Galaxy (see below). Hence, it is believed that collisionless shock acceleration
is responsible for the generation of high energy particles in a wide variety of
environments.

Two points are important to emphasize here. First, we have not specified
the process that produces particles with initial energy E0 À mpv

2
1. This pro-

cess is not understood. This is commonly known as the ”injection problem”.
Without understanding the injection we cannot, for example, determine the
amount of energy deposited in the accelerated particles. Second, we have
treated the accelerated particles as test particles that do not affect the flow.
If the energy carried by the accelerated particles constitutes a significant
fraction of ρv2

1, which is indicated by observations, this assumption would
break.

Finally, let us consider the maximum energy that may be reached. The
particle distribution decays ahead of the shock with a length scale L(E) =
cλ(E)/v1. Assuming that λ grows with E, then for a system of a finite
size, R, the maximum energy reached is determined by L(Emax) ∼ R. Since
particles are deflected by magnetic fields, we must have λ > RL = E/eB,
so that Emax < (v1/c)BR.

For SNRs with B comparable to the equipartition field, B ∝ v1, we
have v1BR ∝ v2

1R = Ṙ2R growing with R as long as the ejecta does not
decelerate, and decreasing with R during deceleration. Thus, the maximum
energy is achieved at the deceleration radius, given by eq. (166). At and
below the deceleration radius the equipartition field is

Bep =
√

4πρ0v2 = 5
(

n0E51

M/M¯

)1/2

mG. (188)

This gives, at the deceleration radius

Emax < 1017 n
1/6
0 E51

(M/M¯)2/3
eV. (189)

If the magnetic field ahead of the shock is not amplified by the plasma
instabilities to near equipartition, and the accelerated particles are deflected
by the magnetic field which exists in the far upstream, ∼ 5µG as typically
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found in the ISM, then the maximum energy would be much smaller, ∼
1014 eV. Either way, this is sufficient to account for the highest energy
electrons inferred to exist, γe,8 ∼ 1 corresponding to 100 TeV.

5.5.3 Galactic cosmic-rays

The ISM is filled with relativistic protons, with energy density ∼ 1eV/cm3

and spectrum dN/dE ∝ E−2.7 (The ISM also contains a smaller number
of relativistic heavy nuclei like C, O, and electrons). The energy density of
these ”cosmic rays” (CRs) is comparable to that of the ISM magnetic field.
This is probably not a coincidence- the CRs are confined to the Galaxy by
the ISM magnetic field, and if their energy density becomes higher than
that of the field they would escape. The energy density is also similar to the
turbulent energy density in the ISM, with characteristic velocity of∼ 30km/s
(and density ∼ 1/cm3). This is probably also not a coincidence, since the
ISM magnetic field is probably amplified by the turbulence.

The observations of CRs allows us to infer that the higher energy pro-
tons escape the Galaxy faster, with confinement time τ ∝ E−0.5±0.1. This
implies that the CRs are generated with a spectrum dṄ/dE ∝ E−2.2 (since
dN/dE = τdṄ/dE). This is consistent with the spectrum expected from
collisionless shock acceleration discussed above. Given the estimates of the
confinement time and the energy density of CRs, it is estimated that CRs
should be produced in the Galaxy at a rate of∼ 1040erg/s = 1049.5erg/100 yr.
Since the SN rate in the Galaxy is estimated as ∼ 1/100 yr, the observed
Galactic CRs may be produced by SNe if they deposit ∼ 1% of their energy
in CRs. It is thus commonly believed that the Galactic CR protons (and
heavier nuclei) with energies reaching at least ∼ 1000 TeV are produced by
SNRs (see eq. 189).
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