
3 Stellar structure, evolution and end states

3.1 Binaries [1hr]

Accurate determination of stellar masses: binaries. Most stars in bina-
ries. Types: visual, astrometric, eclipsing, spectroscopic. Recent review by
Torres, Andersen & Gimenez (2010 A&ARv 18, 67) gives 94 detached non-
interacting eclipsing systems with mass and radius of both stars be known
within errors of 3% accuracy or better.

m1, m2 binary, rest frame m1v1 + m2v2 = 0, choose m1r1 + m2r2 = 0.
Defining

m ≡ m1m2

m1 + m2
, M ≡ m1 + m2, r ≡ r1 − r2, v ≡ ṙ, (4)

the equations of motion become r̈ = −GMmr̂/r2 and

r1 =
m

m1
r, r2 = − m

m2
r, r1 + r2 = r, v1 + v2 = v, (5)

J = mr× v, E =
1
2
mv2 − GMm

r
. (6)

The shape of the orbit is determined by dr/dθ = vr/(vθ/r), with vθ =
(r̂× v)× r̂ = J× r̂/mr, vθ = J/mr and vr = (r̂.v)r̂, giving

(
dr

rdθ

)2

=
(

vr

vθ

)2

=
v2 − v2

θ

v2
θ

=
2E/m + 2GM/r − (J/mr)2

(J/mr)2
. (7)

For motion along an ellipse we have
(

dr

rdθ

)2

=
e2 − (1− r/a)2

(1− e2)
=
−1 + 2a/r − (1− e2)(a/r)2

(1− e2)(a/r)2
. (8)

Comparing eqs. (8) and (7) we find that the orbit is an ellipse with

a = −GMm

2E
, b = a

√
1− e2 =

J√
2m|E| . (9)

Suppose that the orbit is observed at a direction making an angle i with
the direction perpendicular to the ellipse plane, and that its projection on
the ellipse plane makes an angle φ with the major axis of the ellipse. The
binary is completely determined by {m,M,E, J} or by {m,M, a, e}, and
the observed properties by the additional {i, φ}. 2 constraints are provided
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by the (observed) velocity ratio and period. The period T = A/Ȧ, where
A = πab and Ȧ = rvθ/2 = J/2m (Kepler’s 2nd), implying

T 2 =
4π2a3

GM
,

v1 obs

v2 obs
=

m2

m1
. (10)

The observed, line of sight, velocity is given by (the 2nd equality requires
some algebra and note vi obs = (m/mi)vobs)

vobs = [vr cos(φ− θ) + vθ sin(φ− θ)] sin i = −
[
vr cosφ +

(r

a
− 1

)
vθ sinφ

] sin i

e
.

(11)
Solving the differential eq. ṙ = (dr/dθ)θ̇ = (dr/dθ)J/mr2 we find

2πt

T
= −

√
e2 − (x− 1)2 + arctan

[
x− 1

e2 − (x− 1)2

]
, x = r/a. (12)

Thus, r/a = f(t/T, e) and Tvr/a = f ′(t/T, e). Thus, the functional depen-
dence of vobs on t determines {e, φ}, but does not determine the multiplica-
tive constant sin i. The amplitude of the velocity determines ã = a sin i,
so that M = (4π2ã3/GT 2)/ sin3 i. For circular orbits 2πã = Tvobs,max =
T (v1obs,max + v2obs,max) and M sin3 i = v3

obs,maxT/2πG.

• For eclipsing binaries π/2 − i ' R∗/d ¿ 1. Allows to determine M
(and also R∗ from the eclipse photometry).
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Figure 1: 94 detached non-interacting eclipsing binaries, from Torres, An-
dersen & Gimenez (2010 A&ARv 18, 67).

• If only v1 determined, M sin3 i/(1 + m1/m2)3 = (m2 sin i)3/M2 is
determined (but not m1/m2) since v = v1 + v2 = v1(1 + v2/v1) =
v1(1 + m1/m2). For circular orbits (m2 sin i)3/M2 = v3

1obs,maxT/2πG.
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3.2 Stellar structure: Main sequence

3.2.1 Structure eqs. [2hr]

Stellar structure eqs.: Derive hydrostatic and L (rad diffusion eq- simplified
get lc/4), introduce eos and κ, mention composition-nuclear burning.

1
ρ

dp

dr
=

GM

r2
, (13)

dL

dr
= 4πr2q, L = 4πr2j, j =

lc

3
∇Ur. (14)

Mention metalicity (Solar by mass: 75% H, 24% He, 1.6% Z, 1% CNO, 0.1%
Fe) and it’s evolution.

Ideal gas, e = p/(γ − 1), (∂ ln p/∂ ln ρ)S = γ, R/NR example, γ =
4/3, 5/3. Integrate hydrostat to get virial theorem

EG = −3(γ − 1)Ei, EG + Ei = −3(γ − 4/3)Ei =
γ − 4/3
γ − 1

EG. (15)

Contraction leads to larger internal energy (heating). From hyd/virial we
have

T ' GMµ

R
= 1

(M/M¯)(2µ/mp)
R/R¯

keV (16)

when pressure is plasma dominated, p = ρT/µ.
Stability: adiabatic compression p/Rρ ∝ ργ−1/R ∝ R−3(γ−1)−1, (p/Rρ)/(GM/R2) ∝

R−3(γ−1)+1, stable for−3(γ−1)+1 < 0 i.e. γ > 4/3. For γ > 4/3 contraction
leads to larger binding energy. Ionization example: ∆p ∼ ∆nIT − n∆T ∼
∆nI(T − I) < 0,

nI

n0
=

gI

g0
e−I/T ∼ (2mT/~2)3/2

ne
e−I/T . (17)

Luminosity. Derive

L ∼ 4πR2(lc/3)Ur/R ∼ Er/(R2/lc), (18)

explain diffusion time. Simple l: at high enough T , opacity dominated
by Thomson scattering, σT = (8π/3)(e2/mec

2)2 = (2/3π)α2(h/mec)2 =
0.66 × 10−24cm2. For fully ionized Thomson dominated plasma with X
(mass) fraction of He, nHe/nH = X/4(1 − X), ne/ρ = (1 − X/2)/mp, κ =
neσT /ρ = (1−X/2)(σT /mp) = 0.4(1−X/2)cm2/g: κ independent of ρ, T .
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Radiation energy density is Ur = (π2/15)(1/~c)3T 4. For matter dom-
inated pressure we have L ∼ (4π/3)2(ρlc)(M/~c)3(Gµ)4, and writing l =
1/κρ,

L ∼ (c/κ)(M/~c)3(Gµ)4 = 20
(µ/0.5mp)4

κ/1cm2/g

(
M

M¯

)3

L¯. (19)

Detailed gives 104L¯ at 10M¯. Thus, for κ independent of ρ, T - nuclear
energy production rate set by M . Since reaction rate depends strongly on
T , T is close to threshold, implying R ∝ M .

The ratio of radiation to plasma pressure is

prad

pplasma
' T 4/5(~c)3

nT
=

(T/~c)3µ
5ρ

' 0.05
T 3

keV

ρ/1g cm−3
. (20)

For the Sun, ρ ∼ (M/R3) ∼ 10g/cm3. For larger M , R ∝ M gives ρ ∝ M−2.
When radiation pressure dominates, virial gives

T 4

(~c)3
' GM2

R4
, (21)

and L ∼ (GM2/R)(lc/R2),

L ∼ GMc

κ
= 104 M/10M¯

κ/1cm2/g
L¯. (22)

Eddington luminosity. The force on an electron σT (L/4πR2)/c balanced
by GM(ρ/ne)/R2 = GMmp/(1−X/2)R2 gives

LEdd. = 4π
GMmpc

(1−X/2)σT
= 4π

GMc

κ
= 1.3×1038 M/M¯

1−X/2
= 3×104 M/M¯

1−X/2
L¯.

(23)
Note- 1 e− per 2 nucleons for all Z higher than H. Very massive stars have
L ∼ LEdd./3.

3.2.2 L(M) scaling at low M : Kramers (ff/bf) opacity [2hr]

Lower temp, ff & bf opacity. Kirchoff α−1
ν jν = Bν , 4πBν = chνnν =

8π(hν3/c2)(ehν/T − 1)−1,

α−1
ν (4πjν) = 8π(hν3/c2)(ehν/T − 1)−1. (24)

Comment on derivation using Einstein coefficients (n2A21 = n1B12nν −
n2B21nν , A21/B21 = 8πν2/c3, n1B12/n2B21 = ehν/T , 4πjν = n2A21hν,
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cανnν = (n1B12 − n2B21)nν). Bremsstrahlung: dipole P = (2/3)|d̈|2/c3 =
(2/3)(e2/c3)|a|2 = (2/3)(e2/c3)(Ze2/b2me)2 = (2/3)(Z2e6/b4m2

ec
3) over T =

2b/v for hν < mev
2/2, Er = PT = (4/3)(Z2e6/b3m2

ec
3v), ν = 1/T = v/2b,

dν = vdb/2b2, 4πjνdν = nZnev(2πbdb)PT , 4πjν = nZ(16π/3)(ne/v)(Z2e6/m2
ec

3).
For thermal e, ne/v '

√
me/2Te−mev2/2 (in square brackets- the factor

missing for an exact result),

4πjν,Brem. ' 16π

3

[
gff

√
16π
3

]
nenZ

√
me

2T

Z2e6

m2
ec

3
e−hν/T , (25)

αν,ff ' 2
3

[
gff

√
16π
3

]
nenZ

√
me

2T

Z2e6

m2
echν3

(1− e−hν/T ), (26)

l−1
ν,ff '

2
3

[
gff

√
16π
3

]
nenZ

√
me

2T

Z2e6

m2
echν3

, (27)

κff ' 1
ρlν,ff(hν = T )

' [gff

√
16π/3]XZρ

3
√

2Am2
p

Z2h2e6

cm
3/2
e T 7/2

= 1
XZZ2

A

ρ/1g cm−3

T
7/2
keV

cm2/g.

(28)
For bf, a factor correction.

For κ ∝ ρ/T 7/2 we have

L ∝ M5.5R−0.5. (29)

Assuming const T from nuclear threshold, R ∝ M and L ∝ M5.

3.2.3 Characteristic times

tdyn =
1√
Gρ

= 1(ρ/1g cm−3)−1/2hr, ttherm =
R2

lc
=

κρR2

c
∼ 104 κρ

1cm−1
(R/R¯)2 yr.

(30)

3.2.4 Convection

Relate adiabatic to tdyn and ttherm. (∂p/∂ρ)sδρad. = δp = (∂p/∂ρ)sδρ +
(∂p/∂s)ρδs, (∂p/∂ρ)s(δρad. − δρ) = (∂p/∂s)ρδs. Since (∂p/∂ρ)s = c2

s > 0
and (∂p/∂s)ρ > 0, stability requires ds/dr > 0.
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Figure 2: The pp chain (from Carroll & Ostlie)

3.3 Nuclear energy production 2×[2hr]

3.3.1 Nuclear reactions

Binding energy ∼ 1 MeV. Rough nuclei binding energy per nucleon plot:
D∼ 1 MeV, 3He∼ 2.5 MeV, 6Li∼ 5.5 MeV, 4He∼ 7 MeV, 12C∼ 7.5 MeV,
16O∼ 8 MeV, 56Fe∼ 8.5 MeV, U∼ 7.5 MeV. Life-time estimate

tnuc,H ∼ 7MeV
1GeV

Mc2

L
= 1010 M/0.1M¯

L/L¯
yr. (31)

Conversion of 4 p to 4He produces 26.73 MeV, in the main pp branch
(fig. 5) the 2 neutrinos carry 0.52 MeV. CNO: 12C+p → 13N+γ, 13N→13C+e++
νe, 13C+p → 14N+γ, 14N+p → 15O+γ, 15O→15N+e+ + νe, 15N+p →
12C+4He. At ∼ 1%, the last step is replaced with 15N+p → 16O+γ,
16O+p → 17F+γ, 17F→17O+e+ + νe, 17O+p → 14N+4He.

Potential energy as function of separation plot, rb = e2/E = 10−13E−1
MeV cm,

λdB = ~/p = ~/
√

2mE = 10−11E
−1/2
keV cm, πλ2

dB = 10−21E−1
keVcm2.

HΨ = EΨ, ~k =
√

2m(E − V ) (m reduced mass and Ψ(r = r1 − r2)).
Suppression kr ∼

√
2mV (r)r/~, since V ∝ 1/r take the value at largest

r, V (r) = E, r = ZAZBe2/E and approximate kr ∼
√

2m/EZAZBe2/~.
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Probability e−2kr,

Ptun. = e−
√

EG/E , EG = 8[π2/4](αZAZB)2mc2 = 0.5(ZAZB)2
2mc2

1 GeV
MeV,

(32)

σ(E) =
S(E)

E
e−
√

EG/E . (33)

For thermal E distribution,

q = QnAnB〈σv〉 = QnAnB
4√
π

( m

2T

)3/2
∫

dvv2vσ(E)e−E/T

= QnAnB

(
2m

T

)3/2 1√
πm2

∫
dES(E)e−

√
EG/E−E/T (34)

max of f = exp(−E/T −
√

EG/E) at Em/T = (EG/4T )1/3, with width
((fm/f ′′m)1/2) of ∆E/T = (EG/4T )1/6. We therefore approximate

q ≈ QnAnB

√
8

πmT
S(Em)

∆E

T
e−3Em/T

= QnAnB

√
8

πmT
S(Em)

(
EG

4T

)1/6

e−3(EG/4T )1/3
. (35)

For pp the slowest part is pp to D involving weak interaction, for which
S ∼ 10−44cm2keV. For H plasma and Q = εmpc

2 we may write

L =
qM

ρ
≈ 2X2

Hε
ρMc2

mp

√
16

πmpT
Sx1/6e−3x1/3

= 1041 ρ1M/M¯
T

1/2
keV

S−44
x1/6

2
e−3x1/3

erg/s, (36)

where ρ = 10ρ1g/cm3, S = 10−44S−44cm2keV, x = EG/4T . We finally
obtain

EG

T
≈ 700

[
1 + 0.06 ln

(
ρ1M/M¯
T

1/2
keVL/L¯

S−44

)]3

, (37)

which gives T ' 1 keV. Since L grows faster then linear with M , T is
somewhat larger for larger M . For p+C, EG = 36 MeV,

L ≈ 1060 XC,−2ρ1M/M¯
A1T

1/2
keV

S−22
x1/6

5
e−3x1/3

erg/s, (38)
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and e−3x1/3
is smaller at T = 1 keV by 20.5 orders of mag compared to pp.

For power-law approx., q ∝ Tα, α = d ln q/d ln T = x1/3 − 2
3 , which gives

α = 4, 20 for pp, CNO at 1 keV. The steeper dependence on T for the larger
EG of CNO implies that for somewhat higher T CNO takes over, which
implies that for stars more massive then the Sun CNO takes over.

3.3.2 Solar neutrinos

The pp νe (< 0.4 MeV) flux is ' 2L¯/26.2MeV/4πd2 ' 7 × 1010cm−2s−1,
8B decay (< 15 MeV) flux is 6 × 106cm−2s−1, 7Be e− capture (0.9 MeV)
flux is 5× 109cm−2s−1.

• Absorption cross section, σ ' G2
F peEe, for 8B νe on 37

17Cl (71
31Ga) is

10−42cm2 (×2.4), giving 6 × 10−36s−1 per target atom = 6 SNU or
10−4s−1 per kiloton. Davis: 615 ton of C2Cl4, 2× 1030 37Cl atoms,

νe(> 0.814MeV) +37 Cl → e− +37 Ar(35.0d half life). (39)

Gallex/SAGE:

νe(> 0.233 MeV) +71 Ga → e− +71 Ge(11.4d half life). (40)

• Absorption cross section for 7Be e− capture νe on 37Cl (71Ga) is 2.5×
10−46cm2 (×30), giving 1 × 10−36s−1 per target atom =1 SNU or
2× 10−5s−1 per kiloton (×15).

• Absorption cross section for pp νe on 71Ga is 10−45cm2, giving 7 ×
10−35s−1 per target atom = 70 SNU or 6× 10−4s−1 per kiloton.

• Cross section for e− scattering, σ ' G2
F meE, at 10 MeV ∼ 10−43cm2

(times 0.1 for νµ) [Kamoikande, Super-K, SNO], for D at 10 MeV
' 10−42cm2 [SNO].

ν+e → ν ′+e′, νe(> 1.4MeV)+d → 2p+e−, ν(> 2.2 MeV)+d → ν+p+n.
(41)

SNO- 1kt D2O, measured 8B all flavor neutrino flux 0.9±0.1 predicted.
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Figure 3: From Bahcall’s Nobel Symp. Lecture; For continuum the flux is
per MeV.
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Figure 4: Schematic core evolution (solid cyan lines) for {0.1, 1, 10, 100}M¯
stars. Dashed- Chandrasekhar. Min mass for H ignition: 0.08 M¯. Stars
with 8 > M/M¯ develop cores with Mcore < Mch, end their lives as WDs.
Stars with 8 ≤ M/M¯ ≤ 70 develop cores with Mcore > Mch and do not
enter the pair-instability region, move to Fe dissociation and core collapse
(Type II, Ib/c SN). More massive stars enter the pair-instability region (pair
instability SN). Type Ia- probably accretion induced collapse of WD (mass
accretion from companion drives the mass above Mch).

3.4 Post main sequence evolution 2×[2hr]

3.4.1 Post main sequence evolution: Cores

Cold (T = 0) degenerate e−: ∆p = h/L, 2(4π/3)(pf/h)3 = ne,

pf = (3π2)1/3~n1/3
e , P =

1
3
ne < pv >=

1
3

∫
dp

dne

dp
pv, (42)

< pv >=
∫

dpp3v∫
dpp2

=
{ 3

4cpf , v = c
3
5p2

f/m, v = p/m
(43)

PNRD =
(3π2)2/3

5
~2

me
n5/3

e , PRD =
(3π2)1/3

4
c~n4/3

e . (44)

NRD=RD: ne = (1/3π2)(5mec/4~)3, NRD=NRND: ne = (1/3π2)(5meT/~2)3/2,

18



RD=RND: ne = (1/3π2)(4T/c~)3.

Radiation P : ρ ¿ 0.05T 3
keVg/cm3,

RD : ρ À max
[
5× 106, 1T 3

keV

]
(A/2Z)g/cm3,

NRD : 2× 103T
3/2
keV ¿ ρ/[(A/2Z)g/cm3] ¿ 5× 106. (45)

NRD/NRND lies on ρ ∝ T 3/2 (adiabat), NRND cores (with plasma pressure
domination) have T ∝ M/R ∝ M2/3ρ1/3 i.e. ρ ∝ T 3/M2 and may propagate
to cross into NRD.

WD. Crossing into NRD, increase in internal energy gives increase in ρ,
not T . Cooling leaves internal energy, and ρ fixed. R ∼ GMρ/PNRD,

RWD = 4.3
~2

Gmem
5/3
p

(
Z

A

)5/3

M−1/3 = 2.3× 109

(
Z

A

)5/3 (
M

M¯

)−1/3

cm.

(46)
For RD,R ∼ GMρ/PRD, Chandrasekhar mass

MCh. = 3.5
(

Z

A

)2 (
~c

Gm2
p

)3/2

mp = 1.4
(

2Z

A

)2

M¯. (47)

He Burning (10 keV). No stable A = 5, 8. 4He +4 He →8 Be + γ,
τ(8Be) = 2.6 × 10−16s, 8Be+4He→12C+γ. Releases 0.61 MeV per nucleon,
accompanied by 12C +4 He →16 O + γ. Hoyle predicted the existence of
excited energy level of 12C corresponding to 8Be+4He based on observed
He:C:O ratio.

C & O Burning (60,100 keV). 12C+12C→24Mg+γ,23Mg+n,23Na+p,20Ne+α,16O+2α
with 0.54 MeV per nucleon. 16O+16O→32S+γ,31S+n,31P+p,28Si+α,24Mg+2α
with 0.5 MeV per nucleon. Released p, n absorbed fast by nuclei (lower EG)
to produce large variety of isotopes. From O, most abundant is Si.

Si burning (0.3 MeV), NSE. At T > 0.1MeV , approaching the nu-
clei binding energy, photons begin to cause photodisintegration. At 0.3 MeV
light nuclei produced by Si disintegration lead to a network of nuclear re-
actions, near Nuclear Statistical Equilibrium with ”leakage” to Iron group,
26Fe/27Co/28Ni (giving 0.2 MeV per nucleon), for which photodisintegration
sets in at 0.7 MeV.

Trajectories in {ρc, Tc}.

3.4.2 Post main sequence evolution: Envelopes

More on the ”story telling side”.
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Figure 5: Low (left, from Shu) and general (right, from Iben 1985) mass
evolution.
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Low mass stars. H exhaustion in the core, core contraction and heat-
ing, ignition of H shell. Now- p, ρ of burning shell determined by core, not
by balancing nuclear/L. Increased core gravity and T (initially checked by
shell expansion, const L lower Tef. but then) leads to increased nuclear pro-
duction, L exceeds radiative L(M), convection and expansion: ”Ascending
the giant branch” to red giant, > 100L¯, R ∼ 50R¯. The strong depen-
dence of κ on T for low T forces evolution at nearly fixed Tef. (Hayashi):
L ∝ R2T 4

ef.,p = ρT/µ = ρgl, l = T/gµ, strong dependence of l on T implies
nearly fixed T for wide range of R (g). (Low mass < 2.25M¯ leads to He
ignition with degenerate core, ”He flash”) Followed by He ”main sequence”.
L on He MS fixed by M , note L ∝ µ5 for Thomson (µ7 from Kramers).
Increased L and line opacity/convection lead to (ill understood) mass loss.
Tef. depends on mass loss (higher for higher mass loss), gives ”horizontal
branch”.

He exhaustion leads to a similar story: inert CO core, He and H burning
shells, ”Ascending the asymptotic giant branch” to red super giant, 104L¯,
R ∼ 300R¯ with convective envelope. Extensive mass loss give Planetary
Nebula, star ends its life as a WD.

High mass stars. > 8M¯ do not reach degeneracy, hit the Fe dis-
integration or pair production instability zones. Luminosity close to LEd.

on MS, evolution with nearly fixed L and accompanied by strong mass loss
at all stages. Wolf-Rayet stars: ”exposed” He with little H (C/O with lit-
tle else), extensive mass loss. Pre-core-collapse-SN: type II- Inert Fe core,
Si/O/Ne/C/He/H burning shells < 10−2R¯, H envelope extending to tens-
thousand R¯ (BSG-RSG) depending on H loss; type Ib/c- exposed WR.

Seismology, Pulsation. Sound waves, modes, seismology. Helioseis-
mology success- stellar structure. Pulsation: Cepheids, fundamental radial
mode, opacity increasing with density possible in partial ionization region.

3.5 Compact objects: NS/BH

• Will be discussed in ”spectacular explosions”.
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