3 Stellar structure, evolution and end states

3.1 Binaries [1hr]

Accurate determination of stellar masses: binaries. Most stars in binaries. Types: visual, astrometric, eclipsing, spectroscopic. Recent review by Torres, Andersen & Gimenez (2010 A&ARv 18, 67) gives 94 detached non-interacting eclipsing systems with mass and radius of both stars be known within errors of 3% accuracy or better.

 m_1, m_2 binary, rest frame $m_1\mathbf{v}_1 + m_2\mathbf{v}_2 = 0$, choose $m_1\mathbf{r}_1 + m_2\mathbf{r}_2 = 0$. Defining

$$m \equiv \frac{m_1 m_2}{m_1 + m_2}, \quad M \equiv m_1 + m_2, \quad \mathbf{r} \equiv \mathbf{r}_1 - \mathbf{r}_2, \quad \mathbf{v} \equiv \dot{\mathbf{r}}, \tag{4}$$

the equations of motion become $\ddot{\mathbf{r}} = -GMm\hat{\mathbf{r}}/r^2$ and

$$\mathbf{r}_1 = \frac{m}{m_1}\mathbf{r}, \quad \mathbf{r}_2 = -\frac{m}{m_2}\mathbf{r}, \quad r_1 + r_2 = r, \quad v_1 + v_2 = v,$$
 (5)

$$\mathbf{J} = m\mathbf{r} \times \mathbf{v}, \quad E = \frac{1}{2}mv^2 - \frac{GMm}{r}.$$
 (6)

The shape of the orbit is determined by $dr/d\theta = v_r/(v_\theta/r)$, with $\mathbf{v}_\theta = (\hat{\mathbf{r}} \times \mathbf{v}) \times \hat{\mathbf{r}} = \mathbf{J} \times \hat{\mathbf{r}}/mr$, $v_\theta = J/mr$ and $\mathbf{v}_r = (\hat{\mathbf{r}} \cdot \mathbf{v})\hat{\mathbf{r}}$, giving

$$\left(\frac{dr}{rd\theta}\right)^2 = \left(\frac{v_r}{v_\theta}\right)^2 = \frac{v^2 - v_\theta^2}{v_\theta^2} = \frac{2E/m + 2GM/r - (J/mr)^2}{(J/mr)^2}.$$
 (7)

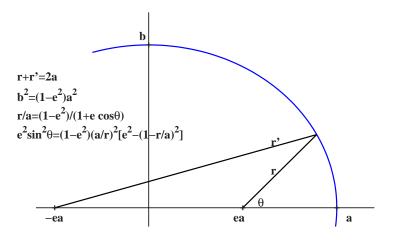
For motion along an ellipse we have

$$\left(\frac{dr}{rd\theta}\right)^2 = \frac{e^2 - (1 - r/a)^2}{(1 - e^2)} = \frac{-1 + 2a/r - (1 - e^2)(a/r)^2}{(1 - e^2)(a/r)^2}.$$
 (8)

Comparing eqs. (8) and (7) we find that the orbit is an ellipse with

$$a = -\frac{GMm}{2E}, \quad b = a\sqrt{1-e^2} = \frac{J}{\sqrt{2m|E|}}.$$
 (9)

Suppose that the orbit is observed at a direction making an angle i with the direction perpendicular to the ellipse plane, and that its projection on the ellipse plane makes an angle ϕ with the major axis of the ellipse. The binary is completely determined by $\{m, M, E, J\}$ or by $\{m, M, a, e\}$, and the observed properties by the additional $\{i, \phi\}$. 2 constraints are provided



by the (observed) velocity ratio and period. The period $T = A/\dot{A}$, where $A = \pi ab$ and $\dot{A} = rv_{\theta}/2 = J/2m$ (Kepler's 2nd), implying

$$T^2 = \frac{4\pi^2 a^3}{GM}, \quad \frac{v_{1\,\text{obs}}}{v_{2\,\text{obs}}} = \frac{m_2}{m_1}.$$
 (10)

The observed, line of sight, velocity is given by (the 2nd equality requires some algebra and note $v_{i \text{ obs}} = (m/m_i)v_{\text{obs}}$)

$$v_{\rm obs} = \left[v_r \cos(\phi - \theta) + v_\theta \sin(\phi - \theta)\right] \sin i = -\left[v_r \cos\phi + \left(\frac{r}{a} - 1\right) v_\theta \sin\phi\right] \frac{\sin i}{e}$$
(11)

Solving the differential eq. $\dot{r}=(dr/d\theta)\dot{\theta}=(dr/d\theta)J/mr^2$ we find

$$\frac{2\pi t}{T} = -\sqrt{e^2 - (x-1)^2} + \arctan\left[\frac{x-1}{e^2 - (x-1)^2}\right], \quad x = r/a.$$
(12)

Thus, r/a = f(t/T, e) and $Tv_r/a = f'(t/T, e)$. Thus, the functional dependence of v_{obs} on t determines $\{e, \phi\}$, but does not determine the multiplicative constant $\sin i$. The amplitude of the velocity determines $\tilde{a} = a \sin i$, so that $M = (4\pi^2 \tilde{a}^3/GT^2)/\sin^3 i$. For circular orbits $2\pi \tilde{a} = Tv_{\text{obs,max}} = T(v_{1\text{obs,max}} + v_{2\text{obs,max}})$ and $M \sin^3 i = v_{\text{obs,max}}^3 T/2\pi G$.

• For eclipsing binaries $\pi/2 - i \simeq R_*/d \ll 1$. Allows to determine M (and also R_* from the eclipse photometry).

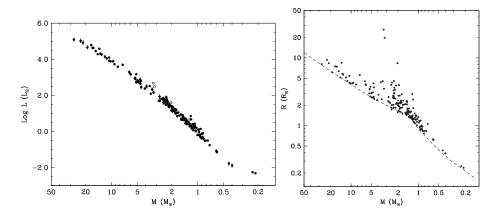


Figure 1: 94 detached non-interacting eclipsing binaries, from Torres, Andersen & Gimenez (2010 A&ARv 18, 67).

• If only v_1 determined, $M \sin^3 i/(1 + m_1/m_2)^3 = (m_2 \sin i)^3/M^2$ is determined (but not m_1/m_2) since $v = v_1 + v_2 = v_1(1 + v_2/v_1) = v_1(1 + m_1/m_2)$. For circular orbits $(m_2 \sin i)^3/M^2 = v_{1\text{obs},\max}^3 T/2\pi G$.

3.2 Stellar structure: Main sequence

3.2.1 Structure eqs. [2hr]

Stellar structure eqs.: Derive hydrostatic and L (rad diffusion eq- simplified get lc/4), introduce eos and κ , mention composition-nuclear burning.

$$\frac{1}{\rho}\frac{dp}{dr} = \frac{GM}{r^2},\tag{13}$$

$$\frac{dL}{dr} = 4\pi r^2 q, \quad L = 4\pi r^2 j, \quad \mathbf{j} = \frac{lc}{3} \nabla U_r. \tag{14}$$

Mention metalicity (Solar by mass: 75% H, 24% He, 1.6% Z, 1% CNO, 0.1% Fe) and it's evolution.

Ideal gas, $e = p/(\gamma - 1)$, $(\partial \ln p/\partial \ln \rho)_S = \gamma$, R/NR example, $\gamma = 4/3, 5/3$. Integrate hydrostat to get virial theorem

$$E_G = -3(\gamma - 1)E_i, \quad E_G + E_i = -3(\gamma - 4/3)E_i = \frac{\gamma - 4/3}{\gamma - 1}E_G.$$
 (15)

Contraction leads to larger internal energy (heating). From hyd/virial we have

$$T \simeq \frac{GM\mu}{R} = 1 \frac{(M/M_{\odot})(2\mu/m_p)}{R/R_{\odot}} \,\mathrm{keV}$$
(16)

when pressure is plasma dominated, $p = \rho T/\mu$.

Stability: adiabatic compression $p/R\rho \propto \rho^{\gamma-1}/R \propto R^{-3(\gamma-1)-1}$, $(p/R\rho)/(GM/R^2) \propto R^{-3(\gamma-1)+1}$, stable for $-3(\gamma-1)+1 < 0$ i.e. $\gamma > 4/3$. For $\gamma > 4/3$ contraction leads to larger binding energy. Ionization example: $\Delta p \sim \Delta n_I T - n\Delta T \sim \Delta n_I (T-I) < 0$,

$$\frac{n_I}{n_0} = \frac{g_I}{g_0} e^{-I/T} \sim \frac{(2mT/\hbar^2)^{3/2}}{n_e} e^{-I/T}.$$
(17)

Luminosity. Derive

$$L \sim 4\pi R^2 (lc/3) U_r / R \sim E_r / (R^2/lc),$$
 (18)

explain diffusion time. Simple *l*: at high enough *T*, opacity dominated by Thomson scattering, $\sigma_T = (8\pi/3)(e^2/m_ec^2)^2 = (2/3\pi)\alpha^2(h/m_ec)^2 = 0.66 \times 10^{-24} \text{cm}^2$. For fully ionized Thomson dominated plasma with *X* (mass) fraction of He, $n_{\text{He}}/n_{\text{H}} = X/4(1-X)$, $n_e/\rho = (1-X/2)/m_p$, $\kappa = n_e\sigma_T/\rho = (1-X/2)(\sigma_T/m_p) = 0.4(1-X/2)\text{cm}^2/\text{g}$: κ independent of ρ, T . Radiation energy density is $U_r = (\pi^2/15)(1/\hbar c)^3 T^4$. For matter dominated pressure we have $L \sim (4\pi/3)^2 (\rho l c) (M/\hbar c)^3 (G\mu)^4$, and writing $l = 1/\kappa\rho$,

$$L \sim (c/\kappa) (M/\hbar c)^3 (G\mu)^4 = 20 \frac{(\mu/0.5m_p)^4}{\kappa/1 \text{cm}^2/\text{g}} \left(\frac{M}{M_\odot}\right)^3 L_\odot.$$
(19)

Detailed gives $10^4 L_{\odot}$ at $10 M_{\odot}$. Thus, for κ independent of ρ, T - nuclear energy production rate set by M. Since reaction rate depends strongly on T, T is close to threshold, implying $R \propto M$.

The ratio of radiation to plasma pressure is

$$\frac{p_{\rm rad}}{p_{\rm plasma}} \simeq \frac{T^4/5(\hbar c)^3}{nT} = \frac{(T/\hbar c)^3 \mu}{5\rho} \simeq 0.05 \frac{T_{\rm keV}^3}{\rho/1 {\rm g\, cm^{-3}}}.$$
 (20)

For the Sun, $\rho \sim (M/R^3) \sim 10 \text{g/cm}^3$. For larger $M, R \propto M$ gives $\rho \propto M^{-2}$. When radiation pressure dominates, virial gives

$$\frac{T^4}{(\hbar c)^3} \simeq \frac{GM^2}{R^4},\tag{21}$$

and $L \sim (GM^2/R)(lc/R^2)$,

$$L \sim \frac{GMc}{\kappa} = 10^4 \frac{M/10M_{\odot}}{\kappa/1 \text{cm}^2/\text{g}} L_{\odot}.$$
 (22)

Eddington luminosity. The force on an electron $\sigma_T(L/4\pi R^2)/c$ balanced by $GM(\rho/n_e)/R^2 = GMm_p/(1-X/2)R^2$ gives

$$L_{\rm Edd.} = 4\pi \frac{GMm_p c}{(1 - X/2)\sigma_T} = 4\pi \frac{GMc}{\kappa} = 1.3 \times 10^{38} \frac{M/M_{\odot}}{1 - X/2} = 3 \times 10^4 \frac{M/M_{\odot}}{1 - X/2} L_{\odot}$$
(23)

Note- 1 e⁻ per 2 nucleons for all Z higher than H. Very massive stars have $L \sim L_{\rm Edd.}/3$.

3.2.2 L(M) scaling at low M: Kramers (ff/bf) opacity [2hr]

Lower temp, ff & bf opacity. Kirchoff $\alpha_{\nu}^{-1}j_{\nu} = B_{\nu}, 4\pi B_{\nu} = ch\nu n_{\nu} = 8\pi (h\nu^3/c^2)(e^{h\nu/T}-1)^{-1},$

$$\alpha_{\nu}^{-1}(4\pi j_{\nu}) = 8\pi (h\nu^3/c^2)(e^{h\nu/T} - 1)^{-1}.$$
(24)

Comment on derivation using Einstein coefficients $(n_2A_{21} = n_1B_{12}n_{\nu} - n_2B_{21}n_{\nu}, A_{21}/B_{21} = 8\pi\nu^2/c^3, n_1B_{12}/n_2B_{21} = e^{h\nu/T}, 4\pi j_{\nu} = n_2A_{21}h\nu$

 $c\alpha_{\nu}n_{\nu} = (n_{1}B_{12} - n_{2}B_{21})n_{\nu}).$ Bremsstrahlung: dipole $P = (2/3)|\ddot{\mathbf{d}}|^{2}/c^{3} = (2/3)(e^{2}/c^{3})|\mathbf{a}|^{2} = (2/3)(e^{2}/c^{3})(Ze^{2}/b^{2}m_{e})^{2} = (2/3)(Z^{2}e^{6}/b^{4}m_{e}^{2}c^{3})$ over T = 2b/v for $h\nu < m_{e}v^{2}/2$, $E_{r} = PT = (4/3)(Z^{2}e^{6}/b^{3}m_{e}^{2}c^{3}v)$, $\nu = 1/T = v/2b$, $d\nu = vdb/2b^{2}, 4\pi j_{\nu}d\nu = n_{Z}n_{e}v(2\pi bdb)PT, 4\pi j_{\nu} = n_{Z}(16\pi/3)(n_{e}/v)(Z^{2}e^{6}/m_{e}^{2}c^{3}).$ For thermal $e, n_{e}/v \simeq \sqrt{m_{e}/2T}e^{-m_{e}v^{2}/2}$ (in square brackets- the factor missing for an exact result),

$$4\pi j_{\nu,\text{Brem.}} \simeq \frac{16\pi}{3} \left[g_{\text{ff}} \sqrt{\frac{16\pi}{3}} \right] n_e n_Z \sqrt{\frac{m_e}{2T}} \frac{Z^2 e^6}{m_e^2 c^3} e^{-h\nu/T},$$
 (25)

$$\alpha_{\nu,\text{ff}} \simeq \frac{2}{3} \left[g_{\text{ff}} \sqrt{\frac{16\pi}{3}} \right] n_e n_Z \sqrt{\frac{m_e}{2T}} \frac{Z^2 e^6}{m_e^2 c h \nu^3} (1 - e^{-h\nu/T}), \quad (26)$$

$$l_{\nu,\text{ff}}^{-1} \simeq \frac{2}{3} \left[g_{\text{ff}} \sqrt{\frac{16\pi}{3}} \right] n_e n_Z \sqrt{\frac{m_e}{2T}} \frac{Z^2 e^6}{m_e^2 ch \nu^3},\tag{27}$$

$$\kappa_{\rm ff} \simeq \frac{1}{\rho l_{\nu,\rm ff}(h\nu = T)} \simeq \frac{[g_{\rm ff}\sqrt{16\pi/3}]X_Z\rho}{3\sqrt{2}Am_p^2} \frac{Z^2h^2e^6}{cm_e^{3/2}T^{7/2}} = 1\frac{X_ZZ^2}{A}\frac{\rho/\lg\,{\rm cm}^{-3}}{T_{\rm keV}^{7/2}}\,{\rm cm}^2/g.$$
(28)

For bf, a factor correction.

For $\kappa \propto \rho/T^{7/2}$ we have

$$L \propto M^{5.5} R^{-0.5}.$$
 (29)

Assuming const T from nuclear threshold, $R \propto M$ and $L \propto M^5$.

3.2.3 Characteristic times

$$t_{\rm dyn} = \frac{1}{\sqrt{G\rho}} = 1(\rho/1\rm{g\,cm^{-3}})^{-1/2}\rm{hr}, \quad t_{\rm therm} = \frac{R^2}{lc} = \frac{\kappa\rho R^2}{c} \sim 10^4 \frac{\kappa\rho}{1\rm{cm^{-1}}} (R/R_{\odot})^2 \,\rm{yr}$$
(30)

3.2.4 Convection

Relate adiabatic to $t_{\rm dyn}$ and $t_{\rm therm}$. $(\partial p/\partial \rho)_s \delta \rho_{\rm ad.} = \delta p = (\partial p/\partial \rho)_s \delta \rho + (\partial p/\partial s)_\rho \delta s$, $(\partial p/\partial \rho)_s (\delta \rho_{\rm ad.} - \delta \rho) = (\partial p/\partial s)_\rho \delta s$. Since $(\partial p/\partial \rho)_s = c_s^2 > 0$ and $(\partial p/\partial s)_\rho > 0$, stability requires ds/dr > 0.

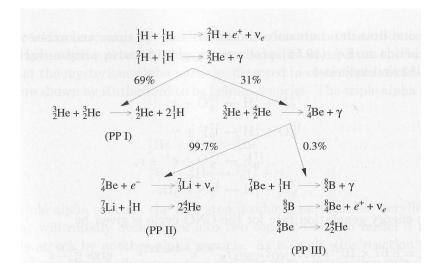


Figure 2: The pp chain (from Carroll & Ostlie)

3.3 Nuclear energy production $2 \times [2hr]$

3.3.1 Nuclear reactions

Binding energy ~ 1 MeV. Rough nuclei binding energy per nucleon plot: D~ 1 MeV, ³He~ 2.5 MeV, ⁶Li~ 5.5 MeV, ⁴He~ 7 MeV, ¹²C~ 7.5 MeV, ¹⁶O~ 8 MeV, ⁵⁶Fe~ 8.5 MeV, U~ 7.5 MeV. Life-time estimate

$$t_{\rm nuc,H} \sim \frac{7 \,\mathrm{MeV}}{1 \,\mathrm{GeV}} \frac{Mc^2}{L} = 10^{10} \frac{M/0.1 M_{\odot}}{L/L_{\odot}} \,\mathrm{yr.}$$
 (31)

Conversion of 4 p to ⁴He produces 26.73 MeV, in the main pp branch (fig. 5) the 2 neutrinos carry 0.52 MeV. CNO: ¹²C+p \rightarrow ¹³N+ γ , ¹³N \rightarrow ¹³C+ e^+ + ν_e , ¹³C+p \rightarrow ¹⁴N+ γ , ¹⁴N+p \rightarrow ¹⁵O+ γ , ¹⁵O \rightarrow ¹⁵N+ e^+ + ν_e , ¹⁵N+p \rightarrow ¹²C+⁴He. At \sim 1%, the last step is replaced with ¹⁵N+p \rightarrow ¹⁶O+ γ , ¹⁶O+p \rightarrow ¹⁷F+ γ , ¹⁷F \rightarrow ¹⁷O+ e^+ + ν_e , ¹⁷O+p \rightarrow ¹⁴N+⁴He.

Potential energy as function of separation plot, $r_b = e^2/E = 10^{-13} E_{\text{MeV}}^{-1} \text{ cm}$, $\lambda_{dB} = \hbar/p = \hbar/\sqrt{2mE} = 10^{-11} E_{\text{keV}}^{-1/2} \text{ cm}$, $\pi \lambda_{dB}^2 = 10^{-21} E_{\text{keV}}^{-1} \text{ cm}^2$.

 $H\Psi = E\Psi, \ \hbar k = \sqrt{2m(E-V)} \ (m \text{ reduced mass and } \Psi(\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2)).$ Suppression $kr \sim \sqrt{2mV(r)r/\hbar}$, since $V \propto 1/r$ take the value at largest $r, V(r) = E, \ r = Z_A Z_B e^2/E$ and approximate $kr \sim \sqrt{2m/E} Z_A Z_B e^2/\hbar.$ Probability e^{-2kr} ,

$$P_{\text{tun.}} = e^{-\sqrt{E_G/E}}, \quad E_G = 8[\pi^2/4](\alpha Z_A Z_B)^2 mc^2 = 0.5(Z_A Z_B)^2 \frac{2mc^2}{1 \text{ GeV}} \text{MeV},$$
(32)
$$\sigma(E) = \frac{S(E)}{E} e^{-\sqrt{E_G/E}}.$$
(33)

For thermal E distribution,

$$q = Qn_A n_B \langle \sigma v \rangle = Qn_A n_B \frac{4}{\sqrt{\pi}} \left(\frac{m}{2T}\right)^{3/2} \int dv v^2 v \sigma(E) e^{-E/T}$$
$$= Qn_A n_B \left(\frac{2m}{T}\right)^{3/2} \frac{1}{\sqrt{\pi}m^2} \int dES(E) e^{-\sqrt{E_G/E} - E/T}$$
(34)

max of $f = \exp(-E/T - \sqrt{E_G/E})$ at $E_m/T = (E_G/4T)^{1/3}$, with width $((f_m/f_m'')^{1/2})$ of $\Delta E/T = (E_G/4T)^{1/6}$. We therefore approximate

$$q \approx Q n_A n_B \sqrt{\frac{8}{\pi m T}} S(E_m) \frac{\Delta E}{T} e^{-3E_m/T}$$
$$= Q n_A n_B \sqrt{\frac{8}{\pi m T}} S(E_m) \left(\frac{E_G}{4T}\right)^{1/6} e^{-3(E_G/4T)^{1/3}}.$$
(35)

For pp the slowest part is pp to D involving weak interaction, for which $S \sim 10^{-44} \text{cm}^2 \text{keV}$. For H plasma and $Q = \epsilon m_p c^2$ we may write

$$L = \frac{qM}{\rho} \approx 2X_H^2 \epsilon \frac{\rho M c^2}{m_p} \sqrt{\frac{16}{\pi m_p T}} S x^{1/6} e^{-3x^{1/3}}$$
$$= 10^{41} \frac{\rho_1 M / M_{\odot}}{T_{\rm keV}^{1/2}} S_{-44} \frac{x^{1/6}}{2} e^{-3x^{1/3}} \, \rm erg/s, \qquad (36)$$

where $\rho = 10\rho_{1}$ g/cm³, $S = 10^{-44}S_{-44}$ cm²keV, $x = E_G/4T$. We finally obtain

$$\frac{E_G}{T} \approx 700 \left[1 + 0.06 \ln \left(\frac{\rho_1 M / M_{\odot}}{T_{\rm keV}^{1/2} L / L_{\odot}} S_{-44} \right) \right]^3, \tag{37}$$

which gives $T \simeq 1$ keV. Since L grows faster than linear with M, T is somewhat larger for larger M. For p+C, $E_G = 36$ MeV,

$$L \approx 10^{60} \frac{X_{\rm C,-2} \rho_1 M / M_{\odot}}{A_1 T_{\rm keV}^{1/2}} S_{-22} \frac{x^{1/6}}{5} e^{-3x^{1/3}} \,\rm erg/s, \tag{38}$$

and $e^{-3x^{1/3}}$ is smaller at T = 1 keV by 20.5 orders of mag compared to pp. For power-law approx., $q \propto T^{\alpha}$, $\alpha = d \ln q/d \ln T = x^{1/3} - \frac{2}{3}$, which gives $\alpha = 4,20$ for pp, CNO at 1 keV. The steeper dependence on T for the larger E_G of CNO implies that for somewhat higher T CNO takes over, which implies that for stars more massive then the Sun CNO takes over.

3.3.2 Solar neutrinos

The $pp \ \nu_e \ (< 0.4 \text{ MeV})$ flux is $\simeq 2L_{\odot}/26.2 \text{MeV}/4\pi d^2 \simeq 7 \times 10^{10} \text{cm}^{-2} \text{s}^{-1}$, ⁸B decay (< 15 MeV) flux is $6 \times 10^6 \text{cm}^{-2} \text{s}^{-1}$, ⁷Be e⁻ capture (0.9 MeV) flux is $5 \times 10^9 \text{cm}^{-2} \text{s}^{-1}$.

• Absorption cross section, $\sigma \simeq G_F^2 p_e E_e$, for ⁸B ν_e on ³⁷₁₇Cl (⁷¹₃₁Ga) is 10^{-42}cm^2 (×2.4), giving $6 \times 10^{-36} \text{s}^{-1}$ per target atom = 6 SNU or 10^{-4}s^{-1} per kiloton. Davis: 615 ton of C₂Cl₄, 2 × 10^{30 37}Cl atoms,

$$\nu_e (> 0.814 \,\mathrm{MeV}) + {}^{37} \,\mathrm{Cl} \to e^- + {}^{37} \,\mathrm{Ar}(35.0d \,\mathrm{half \, life}).$$
 (39)

Gallex/SAGE:

$$\nu_e (> 0.233 \,\mathrm{MeV}) + {}^{71} \,\mathrm{Ga} \to e^- + {}^{71} \,\mathrm{Ge}(11.4d \,\mathrm{half \, life}).$$
 (40)

- Absorption cross section for ⁷Be e⁻ capture ν_e on ³⁷Cl (⁷¹Ga) is 2.5×10^{-46} cm² (×30), giving 1×10^{-36} s⁻¹ per target atom =1 SNU or 2×10^{-5} s⁻¹ per kiloton (×15).
- Absorption cross section for $pp \nu_e$ on ⁷¹Ga is 10^{-45} cm², giving 7 × 10^{-35} s⁻¹ per target atom = 70 SNU or 6 × 10^{-4} s⁻¹ per kiloton.
- Cross section for e^- scattering, $\sigma \simeq G_F^2 m_e E$, at 10 MeV ~ 10^{-43}cm^2 (times 0.1 for ν_{μ}) [Kamoikande, Super-K, SNO], for D at 10 MeV $\simeq 10^{-42} \text{cm}^2$ [SNO].

$$\nu + e \to \nu' + e', \quad \nu_e(> 1.4 \,\mathrm{MeV}) + d \to 2p + e^-, \quad \nu(> 2.2 \,\mathrm{MeV}) + d \to \nu + p + n.$$
(41)

SNO- 1kt D₂O, measured ⁸B all flavor neutrino flux 0.9 ± 0.1 predicted.

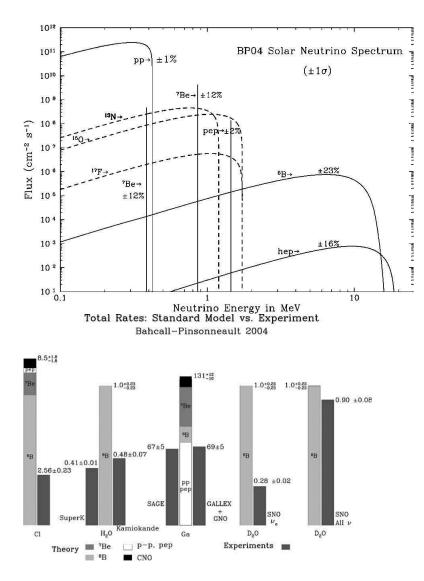


Figure 3: From Bahcall's Nobel Symp. Lecture; For continuum the flux is per MeV.

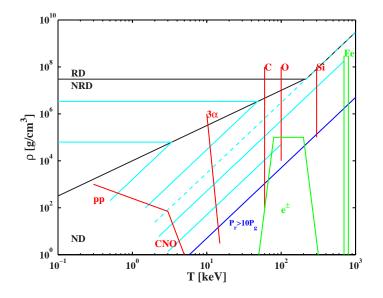


Figure 4: Schematic core evolution (solid cyan lines) for $\{0.1, 1, 10, 100\}M_{\odot}$ stars. Dashed- Chandrasekhar. Min mass for H ignition: 0.08 M_{\odot} . Stars with $8 > M/M_{\odot}$ develop cores with $M_{\rm core} < M_{\rm ch}$, end their lives as WDs. Stars with $8 \le M/M_{\odot} \le 70$ develop cores with $M_{\rm core} > M_{\rm ch}$ and do not enter the pair-instability region, move to Fe dissociation and core collapse (Type II, Ib/c SN). More massive stars enter the pair-instability region (pair instability SN). Type Ia- probably accretion induced collapse of WD (mass accretion from companion drives the mass above $M_{\rm ch}$).

3.4 Post main sequence evolution $2 \times [2hr]$

3.4.1 Post main sequence evolution: Cores

Cold (T = 0) degenerate e^- : $\Delta p = h/L$, $2(4\pi/3)(p_f/h)^3 = n_e$,

$$p_f = (3\pi^2)^{1/3}\hbar n_e^{1/3}, \quad P = \frac{1}{3}n_e < pv >= \frac{1}{3}\int dp \frac{dn_e}{dp}pv,$$
 (42)

$$\langle pv \rangle = \frac{\int dpp^3 v}{\int dpp^2} = \begin{cases} \frac{3}{4}cp_f, & v = c\\ \frac{3}{5}p_f^2/m, & v = p/m \end{cases}$$
 (43)

$$P_{\rm NRD} = \frac{(3\pi^2)^{2/3}}{5} \frac{\hbar^2}{m_e} n_e^{5/3}, \quad P_{\rm RD} = \frac{(3\pi^2)^{1/3}}{4} c\hbar n_e^{4/3}.$$
 (44)

NRD=RD: $n_e = (1/3\pi^2)(5m_ec/4\hbar)^3$, NRD=NRND: $n_e = (1/3\pi^2)(5m_eT/\hbar^2)^{3/2}$,

RD=RND: $n_e = (1/3\pi^2)(4T/c\hbar)^3$.

$$\begin{aligned} \text{Radiation P}: & \rho \ll 0.05 T_{\text{keV}}^3 \text{g/cm}^3, \\ \text{RD}: & \rho \gg \max \left[5 \times 10^6, 1 T_{\text{keV}}^3 \right] \, (A/2Z) \text{g/cm}^3, \\ \text{NRD}: & 2 \times 10^3 T_{\text{keV}}^{3/2} \ll \rho / [(A/2Z) \text{g/cm}^3] \ll 5 \times 10^6. \end{aligned}$$

NRD/NRND lies on $\rho \propto T^{3/2}$ (adiabat), NRND cores (with plasma pressure domination) have $T \propto M/R \propto M^{2/3} \rho^{1/3}$ i.e. $\rho \propto T^3/M^2$ and may propagate to cross into NRD.

WD. Crossing into NRD, increase in internal energy gives increase in ρ , not T. Cooling leaves internal energy, and ρ fixed. $R \sim GM\rho/P_{NRD}$,

$$R_{\rm WD} = 4.3 \frac{\hbar^2}{Gm_e m_p^{5/3}} \left(\frac{Z}{A}\right)^{5/3} M^{-1/3} = 2.3 \times 10^9 \left(\frac{Z}{A}\right)^{5/3} \left(\frac{M}{M_{\odot}}\right)^{-1/3} \text{cm.}$$
(46)

For RD, $R \sim GM\rho/P_{RD}$, Chandrasekhar mass

$$M_{\rm Ch.} = 3.5 \left(\frac{Z}{A}\right)^2 \left(\frac{\hbar c}{Gm_p^2}\right)^{3/2} m_p = 1.4 \left(\frac{2Z}{A}\right)^2 M_{\odot}.$$
 (47)

He Burning (10 keV). No stable A = 5, 8. ⁴He +⁴ He \rightarrow ⁸ Be + γ , τ (⁸Be) = 2.6 × 10⁻¹⁶s, ⁸Be+⁴He \rightarrow ¹²C+ γ . Releases 0.61 MeV per nucleon, accompanied by ¹²C +⁴ He \rightarrow ¹⁶ O + γ . Hoyle predicted the existence of excited energy level of ¹²C corresponding to ⁸Be+⁴He based on observed He:C:O ratio.

C & O Burning (60,100 keV). ${}^{12}C+{}^{12}C\rightarrow{}^{24}Mg+\gamma, {}^{23}Mg+n, {}^{23}Na+p, {}^{20}Ne+\alpha, {}^{16}O+2\alpha$ with 0.54 MeV per nucleon. ${}^{16}O+{}^{16}O\rightarrow{}^{32}S+\gamma, {}^{31}S+n, {}^{31}P+p, {}^{28}Si+\alpha, {}^{24}Mg+2\alpha$ with 0.5 MeV per nucleon. Released p, n absorbed fast by nuclei (lower E_G) to produce large variety of isotopes. From O, most abundant is Si.

Si burning (0.3 MeV), NSE. At T > 0.1 MeV, approaching the nuclei binding energy, photons begin to cause photodisintegration. At 0.3 MeV light nuclei produced by Si disintegration lead to a network of nuclear reactions, near Nuclear Statistical Equilibrium with "leakage" to Iron group, ${}_{26}Fe/{}_{27}Co/{}_{28}Ni$ (giving 0.2 MeV per nucleon), for which photodisintegration sets in at 0.7 MeV.

Trajectories in $\{\rho_c, T_c\}$.

3.4.2 Post main sequence evolution: Envelopes

More on the "story telling side".

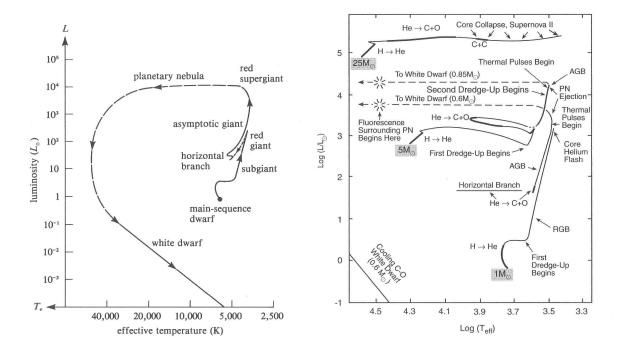


Figure 5: Low (left, from Shu) and general (right, from Iben 1985) mass evolution.

Low mass stars. H exhaustion in the core, core contraction and heating, ignition of H shell. Now- p, ρ of burning shell determined by core, not by balancing nuclear/L. Increased core gravity and T (initially checked by shell expansion, const L lower $T_{\rm ef.}$ but then) leads to increased nuclear production, L exceeds radiative L(M), convection and expansion: "Ascending the giant branch" to red giant, $> 100L_{\odot}, R \sim 50R_{\odot}$. The strong dependence of κ on T for low T forces evolution at nearly fixed $T_{\rm ef.}$ (Hayashi): $L \propto R^2 T_{\rm ef.}^4, p = \rho T/\mu = \rho gl, l = T/g\mu$, strong dependence of l on T implies nearly fixed T for wide range of R (g). (Low mass < $2.25M_{\odot}$ leads to He ignition with degenerate core, "He flash") Followed by He "main sequence". L on He MS fixed by M, note $L \propto \mu^5$ for Thomson (μ^7 from Kramers). Increased L and line opacity/convection lead to (ill understood) mass loss. $T_{\rm ef.}$ depends on mass loss (higher for higher mass loss), gives "horizontal branch".

He exhaustion leads to a similar story: inert CO core, He and H burning shells, "Ascending the asymptotic giant branch" to red super giant, $10^4 L_{\odot}$, $R \sim 300 R_{\odot}$ with convective envelope. Extensive mass loss give Planetary Nebula, star ends its life as a WD.

High mass stars. > $8M_{\odot}$ do not reach degeneracy, hit the Fe disintegration or pair production instability zones. Luminosity close to $L_{\rm Ed.}$ on MS, evolution with nearly fixed L and accompanied by strong mass loss at all stages. Wolf-Rayet stars: "exposed" He with little H (C/O with little else), extensive mass loss. Pre-core-collapse-SN: type II- Inert Fe core, Si/O/Ne/C/He/H burning shells < $10^{-2}R_{\odot}$, H envelope extending to tensthousand R_{\odot} (BSG-RSG) depending on H loss; type Ib/c- exposed WR.

Seismology, Pulsation. Sound waves, modes, seismology. Helioseismology success- stellar structure. Pulsation: Cepheids, fundamental radial mode, opacity increasing with density possible in partial ionization region.

3.5 Compact objects: NS/BH

• Will be discussed in "spectacular explosions".